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ABSTRACT

The performance of analog-based and Kalman filter (KF) postprocessing methods is tested in climato-

logically and topographically different regions for point-based wind speed predictions at 10m above the

ground. The results are generated using several configurations of the mesoscale numerical weather prediction

model ALADIN. This study shows that deterministic analog-based predictions (ABPs) improve the corre-

lation between predictions and measurements while reducing the forecast error, with respect to both the

starting model predictions and the KF-based correction. While the KF generally outperforms the ABPs in

bias reduction, the combination of the KF and analog approach can be similarly successful. In the coastal

complex area, characterized with a larger frequency of strong wind, the ABPs are more successful in reducing

the dispersion error than the KF. The application of the KF algorithm to the analogs in the so-called analog

space (KFAS) is the least prone to standard deviation underestimation among the ABPs. All ABPs improve

the prediction of larger-than-diurnal motions, andKFAS is superior among all ABPs in predicting alternating

wind regimes on time scales shorter than a day. TheABPs better distinguish different wind speed categories in

the coastal complex terrain by using a higher-resolution model input. Differences among starting model and

postprocessed forecasts in other types of terrain are less pronounced.

1. Introduction

The skill of numerical weather prediction models has

improved at both global and regional scales. Their ability

to simulate and forecast winds in complex terrain and

coastal areas is, however, still largely affected by in-

sufficient resolution, imperfect boundary and initial

conditions, simplification of physical processes, and nu-

merical approximations. It is often considered that the

higher the model resolution, the more accurate the

forecast, because of better resolved lower boundary

conditions and flow adaptation when decreasing the grid

spacing. These benefits are not always evident (e.g., Mass

et al. 2002; Rife and Davis 2005). Even at the sub-

kilometer grid spacing, state-of-the-art mesoscale models

still exhibit considerable errors, especially in complex

terrain (Horvath et al. 2012). This is particularly rele-

vant for operational weather prediction systems that are

constrained by the available computing resources. It is

thereby useful to develop postprocessing methods that

reduce starting model errors at locations where mea-

surements are available, in addition to improving the

model itself (e.g., using higher-resolution or an improved

parameterization package).

The idea that analogies (i.e., to similar past forecasts,

measurements, or analysis) can be used for forecasting

future weather has been explored for decades. It is based

on an assumption that if two atmospheric states are

initially very close, they will remain somewhat close for
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some time in the future. It is hard to identify any state in

the past that can be considered a good match to the

present large-scale flow pattern, except for mediocre

analogs (Lorenz 1969). Ruosteenoja (1988) and Lorenz

(1969) quote an astronomical number of years that one

has to wait until it is to be expected to find two atmo-

spheric states that are within present-day observational

error. The use of analogs for short-range weather fore-

casting thus is practically discarded. Van den Dool

(1989), however, shows that it is possible to find useful

analogies if the number of the degrees of freedom in the

matching procedure is reduced. The author uses ana-

lyses over a localized area [i.e., not the entire Northern

Hemisphere as in Lorenz (1969)] and then uses the 12-h

subsequent analysis to each analog as a plausible

500-hPa height forecast. Various procedures are for-

mulated afterward, including different predictors and

analog selection criteria. The use of analogs for fore-

casting of meteorological fields is limited because of

excessive degrees of freedom of the problem at stake.

However, applications including long-range weather

predictions using National Oceanic and Atmo-

spheric Administration (NOAA) outgoing longwave

radiation fields (Xavier and Goswami 2007) and

very short-term orographic precipitation predictions

using radar observations (Panziera et al. 2011) are

skillful. The Southern Oscillation index (SOI) fore-

casts using SOI measurements (Drosdowsky 1994)

and point wind speed forecasts using wind speed

measurements (Klausner et al. 2009) also exhibit

satisfactory results.

Besides predicting the weather using past measure-

ments or analyses, analogies can be employed to reduce

the errors in the numerical weather prediction model

simulations. This approach utilizes achievements of

numerical modeling in predicting the future state of the

atmosphere. Additionally, it can reasonably absorb the

information of the analogs in historical data (statisti-

cal model) in order to improve forecast skill as shown for

idealized cases with low-order models (Ren and Chou

2006) and general circulation modeling (Gao et al. 2006;

Ren and Chou 2007). The pioneering contribution

of Van den Dool (1989) reveals the ability to predict

the forecast skill of a numerical weather prediction

(NWP) model. Analogies are also used to calibrate en-

semble forecasts (Hamill and Whitaker 2006; Hopson

and Webster 2010).

Delle Monache et al. (2011) propose two analog-based

postprocessing methods to improve deterministic NWP

forecasts of 10-mwind speed, based on a historical dataset

including NWP data and observations at a single site. The

weighted mean of the analog ensemble (AN) is tested and

compared to a linear, adaptive, and recursiveKalmanfilter

(KF) postprocessing approach (DelleMonache et al. 2006,

2008, 2011). Another approach is to apply a Kalman filter

to the historical set of (starting) model forecasts in the

analog space, ordered from the worst to the best analog

[Kalman filter in analog space (KFAS); Delle Monache

et al. 2011]. With that approach, the correction of the

current forecast is based on a higher weight to the analog

forecasts closer to it. The authors demonstrate that both

approaches increase correlation and reduce random and

systematic errors. Similar approaches are used for pre-

dicting other variables as well. Djalalova et al. (2015)

show similar results predicting PM2.5 concentration,

while Nagarajan et al. (2015) test the techniques across

several models and meteorological variables. Additionally,

Djalalova et al. (2015) apply theKalman filter algorithm to

the time series of the AN, resulting in a new deterministic

forecast called the KFAN. Delle Monache et al. (2013)

explore benefits from using the analog ensemble (AnEn)

approach to produce probabilistic 10-m wind speed and

2-m temperature forecasts from deterministic numerical

model predictions. The authors show that the AnEn ex-

hibits high statistical consistency, reliability, and the ability

to capture the flow-dependent behavior of errors. The use

of the analog-based approach to produce probabilistic

output is not limited to short- or medium-range forecasts.

Vanvyve et al. (2015) provide high-quality long-term wind

resource estimates, characterized by an accurate wind time

series and frequency distribution. In addition to using

probabilistic analog-based predictions to gain wind re-

source estimates (Vanvyve et al. 2015; Zhang et al. 2015),

they are also used to downscale precipitation (Keller et al.

2017) and to predict solar irradiance (Alessandrini et al.

2015a) and wind power (Alessandrini et al. 2015b; Junk

et al. 2015).

In this study we propose an in-depth analysis of

analog-based methods, for the first time over a coastal

region characterized by complex topography (Fig. 2).

The target area of this study is located in Croatia, where

mesoscale wind circulations include strong bora down-

slope windstorms [which may reach hurricane-scale

strength, e.g., see review by Grisogono and Belusic

(2009)], mountain valley and slope winds, and thermally

induced land–sea breeze (e.g., Teli�sman Prtenjak and

Grisogono 2007; Horvath et al. 2011). Because of the

importance of model resolution necessary to represent

wind processes in the target area, we study whether the

postprocessing improves results when using a higher-

resolution starting model. We thus test the role of the

8- and 2-km grid spacing full-physics Aire Limitée
Adaptation Dynamique Développement International

(ALADIN) model and a dynamical adaptation of the

8-kmALADIN output to the 2-km grid spacing, which is

used for operational wind forecasting in the ALADIN
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consortium (e.g., �Zagar and Rakovec 1999; Ivatek-
�Sahdan and Tudor 2004).

We study the performance of different postprocessing

methods using metrics that consider wind speed as both a

continuous and categorical predictand. These include AN,

KF, KFAS, and KFAN, as described above. We analyze

the results across three regions with distinct wind regimes:

(i) Coastal complex terrain where the most significant

portion of mesoscale energy is carried by strong

downslope windstorms as well as thermally induced

land–sea circulations

(ii) Mountain complex terrain where the most significant

portion of mesoscale energy is carried by weak-to-

moderate valley and slope mountain winds

(iii) Continental, nearly flat terrain where the motions

are predominantly of synoptic-scale variability and

origin (Zaninović et al. 2008; Horvath et al. 2011)

Finally, we study the importance of the starting model

resolution and formulation by using three versions of

ALADIN focusing on coastal complex terrain charac-

terized by the mesoscale wind processes.

In section 2 the postprocessingmethods are described,

while section 3 introduces the NWP model data. In

section 4 the experimental setup is explained in detail,

followed by an observational analysis in section 5. The

results are presented in section 6, and conclusions are

highlighted in section 7.

2. Postprocessing methods

a. Kalman filter

The KF approach is a recursive postprocessing method

used to estimate a signal from noisy measurements. The

KF method uses recent past forecasts and observations

at a given location. The KF method computes past pre-

diction errors and estimates the future bias in the current

raw forecast afterward.

The optimal recursive predictor of forecast bias xt at

time t is derived by minimizing the expected mean-

square error. Kalman (1960) shows that xt at time t can

bewritten as a combination of the previous bias estimate

and the previous forecast error yt [the hat (^) indicates

the estimate]:

x̂
t1Dtjt 5 x̂

tjt2Dt
1K

t
(y

t
2 x̂

tjt2Dt
) . (1)

The Kt is a weighting factor called Kalman gain and can

be calculated from

K
t
5

p
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The expected mean-square error p can be computed as

p
t
5 (p
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1s2
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The s2
h,t and s2

«,t are variances of the noise term and

the unsystematic error term, respectively. Their ratio is set

to a 0.01 value, following other authors (i.e., Delle

Monache et al. 2006, 2011). For any plausible estimate of

p0 and K0, the KF algorithm converges promptly. Addi-

tional details of the procedure and algorithm applied in

this study can be found in Delle Monache et al. (2006).

Advantages of the KF approach are the short training

period and the ability to adapt to changing synoptic con-

ditions. The disadvantage is that it is less likely to predict a

large forecast error when all errors for the past few days

have been smaller, affecting rapid weather changes or

extreme events forecasts (Delle Monache et al. 2011).

b. Analog-based deterministic predictions

The AnEn can be used to estimate the probability

distribution f (yjxf ) of the observed future value of the

variable y at a given time and location. The xf represents

k variables (predictors) from the deterministic (starting)

model prediction xf 5 (x1f , x
2
f , . . . , x

k
f ). To generate y

samples, the AnEn method uses historical data within a

specified analog training period for which both the

deterministic NWP (starting model) and the verifying

observation are available. The best-matching historical

forecasts to the current prediction (analogs) may origi-

nate in any past date in the training period. The quality

of the analog is evaluated by the following metric:
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where Ft is the current NWP deterministic forecast at

the given location, valid at the future time t, whereasAt0

is an analog at the given location with the same forecast

lead time, but valid at a past time t0. The NA is the

number of predictors used in the search for analogs, and

wi are the weights corresponding to a particular pre-

dictor, normalized with the standard deviation of the

time series of past forecasts of a given variable at the

same location is si. The ~t is equal to half the number of

additional times over which the metric is computed

(the half of the time window of any specified width);

therefore, Fi,t1j andAi,t01j are the values of the forecast

and the analog in the time window for a given variable,

respectively. Analogs are found independently for ev-

ery forecast time and location, narrowing the search

around a particular time of day by a time window.

Therefore, the number of degrees of freedom in the
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analog-finding procedure is reduced. The verifying ob-

servations of the best-matching analogs are the mem-

bers of AnEn. The assumption is that the errors

of the good (quality) analog forecasts are likely to

be similar to the error of the current forecast (Delle

Monache et al. 2011). Once the AnEn is formed, it can

be used to produce the deterministic analog-based pre-

diction (ABP), as well as the probabilistic forecast (e.g.,

to estimate the probability of a predefined event).

The ANt forecast for the future time t at a given loca-

tion is an average (weighted, if g 6¼ 1) of the observations

Oi corresponding to N most similar analogs At0 [mea-

sured by metrics previously defined in Eq. (4)]:

AN
t
5

1

N
�
N

i51

gO
i
(A

t0,i). (5)

In another words, the ANt is a (weighted) mean of

N-sized AnEn for a (future) time t. Several authors, such

as Delle Monache et al. (2013), state that the AnEn rank

histograms are uniform. Every member of the AnEn is

thus an equally probable outcome, even though some

analogs are closer to the current forecast than the others

(measured by previously defined metrics). Hence, the

value assigned to the weights g is 1. Forecasting the

median of the AnEn (ANM) is additionally used as an

alternative to the AN that is less sensitive to the assump-

tions about the overall nature of the data (e.g., robust;

Wilks 2011) and to the small number of outliers (e.g., re-

sistant; Wilks 2011) . The analogs are searched in forecast

space only, for both the AN and ANM. Therefore, no

observations are used to select the best analogs, and some

sort of correction in real time is desired.

The KF uses all the available information to estimate

the error of the current forecast, recursively giving higher

weights to themost recent data. However, theKF alone is

not able to predict large day-to-day changes in the pre-

diction error, as discussed thoroughly in Delle Monache

et al. (2011). The benefits and shortcomings of analog-

based and KF approaches complement one another;

hence, combining them seems like a reasonable choice. In

this paper, two different ways to combine these methods

are tested and schematically presented in Fig. 1.

The first combination of analog and the KF approach

includes running algorithms independently. First, the

AN forecasts are issued (or already saved), completing

the time series of the AN forecasts. The last member of

the AN time series is valid at the future time t. Then, the

KF algorithm is applied (in time) to the time series of

the AN forecasts. The KF of the AN forecasts is created

(the KFAN forecast). In other words, the KF is applied

to the time series of themeanAnEn values. Hereby, every

ensemble consists of observations corresponding only to

theN best analogs. The KF algorithm gives more weight

to the recent AN forecast than the AN forecasts issued

at some time in the past. The hypothesis is that the

KFAN forecast is as adaptable as the AN forecast (e.g.,

when large day-to-day changes in the prediction error

are present), but as unbiased as the KF forecast.

Another possibility is to run the KF through an or-

dered set of (all) analog forecasts, rather than in time.

The entire time series of analogs is ordered from the

least similar (worst analog) to the most similar (best

analog) model forecast to the current one, forming an

analog space for every future time t. Then, the KF is

applied to the ordered set of analogs in analog space

(KFAS). The KFAS algorithm weights closeness in an-

alog space and not proximity in time (as in the KFAN

forecast). Therefore, the starting model forecast (issued

in the past) that is the most similar to the current starting

model forecast is given the most weight. This procedure

should be able to cope even with drastic changes in both

the starting model and the AN forecast error.

3. NWP model data

Three configurations of the operational limited-

area mesoscale NWP model ALADIN (ALADIN

International Team 1997) of the Croatian Meteoro-

logical and Hydrological Service are used to generate

10-m wind speed forecasts:

d The operational limited-area mesoscale ALADIN

model is launched twice a day (0000 UTC and

1200 UTC) at 8-km horizontal grid spacing (A8).

The A8 model uses the hydrostatic dynamics with

spectral solver on 37 hybrid sigma-pressure vertical

levels (Tudor et al. 2013). The initial conditions are

based on a variational data assimilation scheme for the

upper-air fields and optimal interpolation for surface

variables (Stane�sić 2011). The lateral boundary con-

ditions are taken from the Action de Recherche Petite

Echelle Grande Echelle (ARPEGE) global model,

which is run operationally at Météo France. Vertical

transfer of momentum, heat, and moisture are based

on a scheme that uses prognostic-turbulence kinetic

energy (Geleyn et al. 2006) combined with modified

Louis et al. (1982) stability dependency in the surface

layer (Redelsperger et al. 2001). Contribution of

shallow convection to evolution of prognostic fields

is calculated within the turbulence parameterization

according to Geleyn (1987). Deep convection is de-

scribed by the modified diagnostic Kuo scheme

(Geleyn et al. 1994). Microphysics parameterization

(Catry et al. 2007) includes prognostic treatment of

cloud water/ice, rain, and snow, as well as a statistical
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approach for sedimentation of precipitation (Geleyn

et al. 2008). Radiation effects are described according

to Geleyn and Hollingsworth (1979) and Ritter and

Geleyn (1992). The impact of soil processes on prognos-

ticmodel fields is accounted by a two-layer Interactions

between Soil, Biosphere, and Atmosphere (ISBA;

Noilhan and Planton 1989) scheme, which is also used

for the surface data assimilation (Giard and Bazile

2000). The physics contribution is coupled to the

dynamics via interface based on a flux-conservative

set of equations (Catry et al. 2007).
d An operational ALADIN high-resolution dynamical

adaptation (DA) model. The DA procedure (�Zagar

and Rakovec 1999) takes the output fields from

the A8. The DA dynamically adapts wind fields to

the higher-resolution horizontal terrain (2-km grid

spacing) by adopting the model field to reach a quasi-

stationary state forced by time-invariant lateral

boundary conditions (Ivatek-�Sahdan and Tudor

2004). Vertical levels in the planetary boundary layer

are approximately at the same heights as in the A8

model (the lowest level is about 17m above ground).

The vertical levels in the upper troposphere and

stratosphere are reduced; that is, the DA is run on 15

levels in the vertical. The wind field is interpolated to

the height ofmeasurements using the stability functions

and Monin–Obukhov similarity theory (Geleyn 1988).

Turbulence is the only parameterization scheme used

in the DA, while contributions of moist and radiation

processes are neglected. This cost-effective forecast

refinement is run operationally twice a day (0000 and

1200 UTC run) for 72h ahead with a 3-h model output

frequency. In complex terrain the DA improves near-

surface wind predictions, as described in a number

of studies such as Tudor and Ivatek-�Sahdan (2002),

Ivatek-�Sahdan and Tudor (2004), Ivatek-�Sahdan and

Ivan�can-Picek (2006), Bajić et al. (2007, 2008), Horvath

et al. (2011), and so on. The DA is used for operational

wind forecasting in several countries that aremembers of

the ALADIN consortia.
d ALADIN at 2-km horizontal grid spacing (A2) is con-

figured similarly to the A8, but with nonhydrostatic

dynamics. Physics parameterizations include a full

parameterization set as in the A8, with an upgrade

of a deep convection parameterization. Unlike the

A8, the deep convection in the A2 is a prognostic

mass-flux-type scheme (Gerard and Geleyn 2005;

Gerard 2007). The convective processes in the A2 are

accounted with the use of prognostic variables for

updraft and downdraft vertical velocities and mesh

fractions (Gerard et al. 2009). The A2 is initialized

from the 6-h forecasts of the operational A8 0000 UTC

run, and it is run with the scale-selective digital filter

initialization (Termonia 2008). This high-resolution

forecast is run once daily for 24h in advance (until

0600 UTC of the following day), with 1-h model output

frequency on 37 vertical levels (Tudor et al. 2013).

All three ALADIN configurations (A8 0000 UTC, DA

0000 UTC, and A2 0600 UTC) are used to prepare

forecasts for the period 2010–12. The domains for all

configurations are shown in Fig. 2. For every location of

the analyzed measurement stations, the closest model

grid point (on land) is chosen from the four grid points

surrounding the observation location.

4. Experimental setup

Model andobservation datasets over the 2010–12 period

are divided into training and verification periods. The train-

ing period is from 2010 to 2011, and 2012 is used as the

FIG. 1. The schemes for the KFAN and the KFAS forecasts in

real time. For the KFAN forecasting, the last member of the AN

time series is created, while previously issued AN forecasts are

saved. The AN is hereby the mean of the N-member ensemble

(N 5 4 in this example). The KF is then applied to the time series

of AN values and real-time measurements, recursively giving the

highest weight to the most recent AN (i.e., closest in time). For the

KFAS forecasting, the entire time series of previously issuedmodel

forecasts (analogs) are sorted by their similarity to the current

model forecast, thus forming an analog space. Then, the KF is

applied to the analogs and corresponding measurements in the

analog space, giving the most weight to the most similar forecast.
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verification period. The training period increases gradually

after every forecast. As the newer observations might be

available in real-time operational setting, they are added

to the training database together with the corresponding

NWP model forecast. Therefore, the training period is

initially 24 months long (for the first verified forecast

initialized 1 January 2012) and then prolonged on a daily

basis up to 36 months (for the last forecast initialized

31 December 2012). Delle Monache et al. (2006) show

that there is an improvement in skill for longer training

datasets. The improvement is intense when increasing

the training period, especially for training periods up to

6 months. The improvement in skill becomes less nota-

ble at around a yearlong dataset. Thus, a dataset ranging

from 2 to 3 years should be long enough for this method

in our opinion. Furthermore, the ABPs work best with

consistent model setup. Since (operational) model setup

changes every once in a while, in our opinion it would be

better to develop a methodology that can easily adapt to

those changes. It is, however, possible that by using a

longer training dataset, the prediction of rare events

such as extremely strong wind would be even better.

When using the A8 or the A2 as the starting model,

five predictors are used: wind speed and direction log-

arithmically interpolated to 10-m height, air tempera-

ture at 2-m height, air pressure, and relative humidity.

The DA does not include moist and radiation physics.

Hence, only physical variables related to wind fields are

included in the search for the best analogs: wind speed

and direction logarithmically interpolated to 10-m

height, and vorticity and divergence at the lowest vertical

level (;17m). The weight assigned to wind speed and

direction is 1, and it is 0.8 for the all other predictor

variables. The time window used to find the most similar

analogs is defined by 1 time step before and after the lead

time of interest. For instance, in Eq. (4), ~t is equal to 1,

hence forming a 6-h time window for the A8 and the DA

models, or a 2-h time window for theA2model. The time

window, the predictors, and the corresponding weights

used to find the most similar analogs are the same for

the KFAN and the KFAS as for the AN and the ANM.

The same recursive algorithm is used for generating the

KFAN and the KFAS as for the KF.

5. Observational analysis

The postprocessed forecasting methods described in

section 2 are tested at 14 locations in Croatia, covering

different climatological regions (cf. Fig. 2). Our goal is to

compare and contrast the performance of the different

methods, generated from different NWP models, and at

different complex terrain and coastline sites. The loca-

tions are thereby divided into three groups:

1) Group I is a coastal complex terrain region that includes

the locations near the coastline and near the west-

ern slopes of the Dinaric Alps. The prominent wind

in this area is the bora, a strong and gusty downslope

windstorm [e.g., see review by Grisogono and Belusic

(2009)]. The borawind ismore frequent in the northern

than in the southern Adriatic. Nevertheless, its maxi-

mal strength is similar in both regions (Horvath et al.

2009). Other mesoscale wind circulations are also

notable and are governed by the surface inhomogeneity

(e.g., land–sea breeze) and vicinity of themountains (e.g.,

mountain–plain circulation, gap flows, weak downslope

flows). Therefore, the diurnal cycle is shaped by the

proximity of the sea and terrain elevation. The highest

wind speeds analyzed in this study are recorded in this

area (Fig. 3a), and the mean wind speed is 4.0ms21.

FIG. 2. (a) TheALADINmodel domains and terrain—larger with 8-km horizontal grid spacing (A8) and smaller

with 2-km horizontal grid spacing (A2; DA). (b) Topography and spatial distribution of the 14 stations providing

the 10-m wind speed observations used in this study. The stations are divided in three groups: coastal complex

terrain (group I; red markers), mountain complex terrain (group II; blue markers), and nearly flat continental

terrain (group III; yellow markers).
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2) Group II is a mountain complex terrain region with

highly complex topographical features. Locations in

this area are farther from the coastline and at higher

elevation than the locations in any other group, with

mountain tops reaching 1500m above mean sea

level (MSL). Because of terrain complexity and low

population density, the measurements are coarse in

space in this area. The measurements may also be

prone to longer data gaps due to the remoteness of

locations and generally more severe winter climate.

After our analysis, we therefore chose three loca-

tions that satisfy the basic quality requirements

within this area (e.g., that there are no gaps longer

than a few weeks). This area is characterized by a

significant portion of energy variance due to mountain

slope and valley winds. Wind speeds in the mountain

complex terrain are lower than in the coastal complex

terrain (Fig. 3b) and the mean wind speed is 2.0ms21.

3) Group III stations are located in the nearly flat inland

continental climatological region of Croatia. The

terrain elevation is up to 100-m MSL. The diurnal

cycle is shaped mainly by the gentle microscale

variations of the topography. The region is still

influenced by nonlocal effects of the Dinaric Alps

mountain system to the west and southwest, since

these mountains affect predominant westerly flow

through channeling, blocking, and other mesoscale

processes. A strong wind is very rare in the conti-

nental area, and it occurs during the cold-air out-

breaks from polar or Siberian areas in winter or

during rough weather in summer (Zaninović et al.

2008). The wind speeds are relatively low (Fig. 3c),

with a mean wind speed of 2.0m s21.

Mean wind speed for all 14 stations is 2.7m s21. The

maximum of the diurnal cycle occurs around 1200 UTC

on average for all stations (Fig. 3d). However, different

processes contribute to the average daily cycle at dif-

ferent locations.

6. Evaluation of the deterministic forecasts

a. Wind speed as a continuous predictand

To evaluate the performance of the different deter-

ministic postprocessing methods, wind speed can be

considered as a continuous or categorical predictand.

Considered as a continuous variable, wind speed forecast

error is quantified by root-mean-square error (RMSE),

which penalizes a larger discrepancy more than a smaller

one. It is possible to specify the source of the error by

decomposing the RMSE to the bias of the mean (or

simply bias), bias of the standard deviation (STD), and

dispersion (phase) error (e.g., Murphy 1988; Horvath

et al. 2012). Since the sum of these three terms is exactly

FIG. 3. The boxplots of the observed data (outliers are not shown), depending on time of the day. The data are measured during the

2010–12 period at 14 stations in Croatia. In addition to (d) the boxplot for all the data available, the data are sorted into (a)–(c) groups

based on terrain type and basic climatological features. The green lines represent the 50th percentile and red triangle markers the 90th

percentile. Those values are used as thresholds between categories in the verification procedure.
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the RMSE value, it is enough to provide information

about two out of these three terms to describe the dom-

inant source of the error (the third term is the RMSE

value reduced by the value of the other two terms). The

term describing the dispersion error involves the Pearson

correlation coefficient weighted with the STD of both

the forecasts and measurements. Correlation coefficient

and dispersion error are thus closely related: the smaller

the correlation coefficient, the larger the dispersion

error term in RMSE decomposition. In this work, the

rank correlation coefficient (RCC) is used as a robust

and resistant alternative to Pearson correlation, ap-

propriate if dealing with non-Gaussian-distributed

variables such as wind speed. Unlike the Pearson cor-

relation coefficient, the RCC is a nonparametric sta-

tistic. The RCC therefore allows a nonlinear relationship

between predictions and observations (Wilks 2011;

Jolliffe and Stephenson 2011).

The first step in testing an ensemble-basedmethod is to

select a number of ensemble members N. For that pur-

pose we analyze the RMSE averaged over all locations

and all lead times (Fig. 4a). The optimal N is presented

and determined for theA8 startingmodel. The results for

the A2 and the DA are not shown here because they are

similar to the A8 results. Specific differences between the

results generated with different models, however, will

be discussed afterward. The mean confidence intervals

shown here are estimated with bootstrapping. The

starting model forecasts (A8) yield RMSE of 2.35ms21,

RCC of 0.58, and almost nonexisting bias of20.01ms21.

These values are determined by the wind climate, com-

plexity of topography, and the low resolution of the

driving mesoscale model. All tested postprocessing

methods (PPMs) averaged over the three studied regions

improve results of the A8 model. The KF significantly

reduces RMSE (Fig. 4a) and improves correlation

(Fig. 4b), while bias remains small (Fig. 4c) when com-

pared to the A8. Using analogs improves results even

further than using just the KF, as can be seen in the

KFAS. This ABP uses the entire analog space and

therefore does not depend on the N. The other ABPs

(AN, ANM, and KFAN) produce similar results as the

KFAS for about 10 or more ensemble members.

Furthermore, the AN, the ANM, and the KFAN show

similar behavior—the RMSE is reduced at first by in-

creasing theN, but then it increases again forN. 15. By

increasing the N, correlation also improves, while bias

slightly worsens. The mean of the observed wind speed

during the verification period differs from the mean

during the training period for approximately 0.2m s21.

The bias is likely converging to that value when in-

creasing the N. Even though the PPMs’ biases are sig-

nificantly different than the bias for the A8, one should

take into consideration that the bias under 0.5m s21

can be considered relatively small. It is an order of

magnitude smaller than the other two terms in RMSE

decomposition and comparable to observational error

(up to 0.5m s21 or even higher; WMO 2008). Given the

RMSE and bias growth for the larger N, the optimal

number of ensemble members is set to 15, which is used

hereinafter.

It can be noticed that theANMhas the highest RMSE

and the highest bias if different ABPs are compared.

Since the other ABPs produce better results than the

ANM, and specific benefits are not achieved in tested

cases presented in this work, results for theANMare not

shown hereinafter. Both AN and KFAN considerably

reduce the RMSE (as evident from Fig. 4a) better than

any other technique tested here. At the same time they

improve correlation (Fig. 4b). Both AN and KFAN

have a very small negative bias, mostly between 20.1

and 20.2m s21. The AN has slightly better correlation

and worse bias results than the KFAN, resulting in

indistinguishable RMSE.

Since the KFAN forecast is created by applying the

KF to the AN forecast, the differences between the

KFAN and the AN in the correlation and bias results

may be expected. The KF algorithm updates its estimate

of the future bias by using the old bias plus uncertainty.

The estimate is corrected by a linear function of the

difference between the previous prediction and the

verifying bias. It is therefore very successful in re-

moving the systematic errors (such as bias of the

mean) if the bias does not change rapidly (i.e., large

day-to-day variations). By reducing the noise, the

application of the KF algorithm can also lead to the

decrease of the correlation coefficient [i.e., increase of

the dispersion error, as explained in Delle Monache

et al. (2006, 2008)].

A more detailed insight into the performance of the

PPMs can be gained by analyzing the metrics in topo-

graphically different regions and at different lead times.

The A8 model has the highest RMSE for the coastal

complex terrain among all groups of stations (Fig. 5a).

Besides the increasing trend for longer lead times, the

A8 RMSE error is typically the largest during night-

time and peaks at 0600 UTC at coastal areas. While

during nighttime the A8 exhibits maximum correlation

(Fig. 5e), it underestimates the mean (Fig. 5i) and the

STD (Fig. 6a) more than during daytime. While the

observed wind speed shows the highest variability at

0600UTC (Fig. 6a), theA8 forecasts almost do not show

STD diurnal cycle. That result suggests a systematic

source of the errors for the diurnal shape of the A8

RMSE (Fig. 5a). It is possible that the A8 model un-

derestimates the land breeze, the combination of a land
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breeze and downslope wind called burin (Poje 1995), or

underestimates both mean speed and variability of the

strong bora wind, which can be determined with an

analysis by season (e.g., bora occurs mostly during

wintertime and is variable and intense, while the land

breeze can be dominant during summertime stable

conditions) or by examining case studies, but that is out

of the scope of this work.

It is crucial to determine which PPM is the most suc-

cessful in the error reduction, especially in the coastal

group of the stations where the error is the largest.

Additionally, it is important to demonstrate which term

of the RMSE decomposition is reduced by which PPM.

The results are presented in such manner that one can

thus decide which PPM is the most applicable for a

specific situation after a simple statistical analysis of the

potential starting model.

The KF reduces RMSE and bias (Fig. 5i) while in-

creasing STD (Fig. 6a), maintaining very similar depen-

dency on lead time as the A8. The other ABPs (AN,

KFAN, andKFAS) improve theA8 results even further—

reducing RMSE and bias while STD is even closer to the

STD of the measurements. Moreover, even though the

STD is still a bit underestimated, the diurnal cycle of STD

is more similar to the diurnal cycle of the measurements

than for the A8. Previously mentioned systematic A8

error (possibly unresolved land breeze, underestimation of

burin wind, etc.) is thus reduced or removed completely.

The STDs of the ABPs (AN, KFAN, and KFAS) are

very close to the STD of the measurements available

over the training period. The AN, the KFAN, and the

KFAS underestimation of the STD is therefore partially

explained by the fact that there is an STD difference

between training and testing period.

The AN forecast is the most prone to systematic un-

derestimation of the STD. This reduction of the forecast

variability is due to averaging of AnEn members while

predicting the mean of the ensemble. This averaging

naturally reduces the variability and might partially be

improved by using the lower number of ensemble

members N. This systematic error is partially removed

by the application of the KF algorithm in the KFAN

forecast. The KFAS forecast exhibits the highest STD

among the ABPs. The simplified schematic example for

improving the adaptability of the KFAS forecast is

provided in DelleMonache et al. (2011). The hypothesis

is that applying the KF algorithm in analog space (rather

than in time) results in higher forecast variability during

alternating wind regimes. The higher KFAS STD than

the KFAN STD in the coastal area supports this hy-

pothesis. The difference in the STD between the KFAN

and the KFAS does not necessarily mean that the higher

variability for the KFAS is occurring during alternating

wind regimes (i.e., on the time scales shorter than a day).

FIG. 4. (a) RMSE, (b) RCC, and (c) bias dependency on number of analog ensemble membersN for the AN, the ANM, and the KFAN

ABPs. The results are generated with the A8 and averaged over all lead times and all locations during 2012. The AN, ANM, and KFAN

results are then compared to the A8 model, the KF, and the KFAS forecasts, which do not depend on N. The mean values of the 95%

bootstrap confidence intervals are indicated by the error bars.
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FIG. 5. (a)–(d) RMSE, (e)–(h) RCC, and (i)–(j) bias dependency on forecast lead time for the A8 starting model and the corresponding

PPMs (KF, AN, KFAN, and KFAS). The results are averaged over corresponding group and for all locations during 2012. The mean

values of the 95% bootstrap confidence intervals are indicated by the error bars.
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The remaining underestimation of STD depends on

other aspects such as the variability of starting model

forecasts and fine tuning of the analog search setup [e.g.,

choice of predictors and corresponding weights, as shown

by Junk et al. (2015)]. The variability in the training

period might be enlarged by prolonging the period itself

(i.e., including El Niño–Southern Oscillation variations).

Finally, the variability of the PPMs’ forecasts might be

further improved by additional calibration, but that is

beyond the scope of this paper.

The KF has smaller RCC than the A8, unlike all the

ABPs that have higher RCC than the A8. Improving the

RCC shows that by using analogs and measurements to

build a prediction the randomerror is reduced, suggesting

that additional information on physical processes is in-

cluded in the ABPs. Among different ABPs, the AN

seems to have the highest correlation, while the KFAN

reduces the bias the most, as previously described in the

more general case. The KFAS exhibits the highest STD

among the ABPs, supporting the hypothesis that using

the analog space improves variability during alternating

wind regimes. After all, there are no significant differ-

ences in reduction of RMSE for the AN, the KFAN, and

the KFAS.

The A8 exhibits considerably smaller RMSE for the

mountain complex (Fig. 5b) and nearly flat terrain

(Fig. 5c) than is the case for the coastal complex terrain

area. The smaller A8 RMSE is predominantly due to

lower, less underestimated STDofmeasuredwind speed

for these groups (Figs. 6b,c) than for the coastal complex

terrain (Fig. 6a). Even though the A8 error is smaller

than in the coastal complex terrain, it is still very im-

portant to determine which term in the RMSE decom-

position is dominant and how it can be reduced by

postprocessing. Instead of underestimation of (on av-

erage) higher wind speed in the coastal terrain, the A8

overestimates (on average) lower wind speed (Figs. 5j,k)

in the mountain complex and the nearly flat terrain,

exhibiting similar absolute value of the bias. The A8

STD is much closer tomeasured wind speed STD for the

mountain complex (Fig. 6b) and the nearly flat (Fig. 6c)

than the coastal complex terrain. The A8 RCC is lower

for the mountain (Fig. 5f) and for the nearly flat terrain

(Fig. 5g) than for the coastal complex terrain, decreasing

with measured wind speed and corresponding STD.

It seems that the lower the average wind speed for a

certain group, the lower the correlation of measure-

ments and predictions, implying that weak wind is less

FIG. 6. The dependency of the standard deviation on forecast lead time for the observations during the training (2010–11) and the

verification period (2012), the A8 starting model (2012), and the corresponding PPMs (KF, AN, KFAN, and KFAS). The results cor-

respond to the (a)–(c) three groups and to (d) all locations. Themean values of the 95%bootstrap confidence intervals are indicated by the

error bars.
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predictable than strong wind. This especially makes

sense for wind speeds that are comparable to the ob-

servational error (up to 0.5m s21 or even higher; WMO

2008). Even though some statistical properties of the A8

predictions are similar for the mountain and nearly flat

terrain, the physical processes influencing the flows are

different. This is due to different dominant topographic

characteristics, as explained in section 5. For this reason

it is interesting to compare the effect of PPM in a certain

group of stations.

The KF exhibits significantly lower RMSE than the

A8 in the mountain and nearly flat terrain. The A8 bias

is almost completely removed by the KF, regardless if

the A8 is underestimating (Fig. 5i) or overestimating

(Figs. 5j,k) wind speed. The KF STD in the mountain

and the nearly flat terrain is almost the same as the A8,

and very close to measured STD as well. In addition to

reducing the A8 bias of the mean and maintaining the

bias of the STD (which is almost nonexistent), the KF

also improves theRCC for all lead times in themountain

and the nearly flat terrain. Unlike for the coastal com-

plex terrain, dispersion error is therefore reduced by the

KF, especially for the nearly flat terrain. Furthermore,

the KF dependency on lead time is different than for

the A8 in the nearly flat terrain. The KF exhibits a local

RCC maximum around 0000 UTC, while the A8 exhibits

a local minimum (Fig. 5g).

The ABPs (AN, KFAN, and KFAS) in the mountain

complex terrain and the nearly flat terrain reduce the

A8 RMSE even better than the KF, further improving

RCC and reducing bias. The RMSE, RCC, and bias

dependencies on lead time are similarly shaped as for

the KF. This is especially interesting in the nearly flat

terrain, where previously mentioned improvement

of the A8 RCC is even more indicated when using

analogs than for the KF. The analog approach selects

similar numerical predictions (not necessarily recent)

for assessment of the starting model error, unlike

nonselectively using previously predicted (recent)

values in the KF algorithm. The KF would be capable of

improving persistent error in predicting stable boundary

layer flow once it is started, as previously mentioned for

the application of the KF algorithm. Analog approach

would be more adaptable and capable of predicting the

beginning of the flow, thus resulting in even higher RCC

than for the KF. Similarly to the coastal complex terrain,

in the mountain complex and the nearly flat terrain the

AN seems to be the most highly correlated with mea-

surements. The KFAN has slightly lower RCC, but is

almost unbiased. Unlike the A8 and the KF, the ABPs

exhibit slight underestimation of STD in the mountain

complex (Fig. 6b) and nearly flat terrain (Fig. 6c). The

underestimation of the STD is the smallest for the

KFAS and the largest for the AN, for the same reasons

as previously mentioned. The results for the KFAN are

mostly in between these two (AN and KFAS), which

may be explained by the fact the KFAN shares impor-

tant features with both methods.

Overall, the A8 RMSE is significantly reduced by

every PPM tested for all lead times, more by the ABPs

(AN, KFAN, and KFAS) than for the KF (Fig. 5d). All

PPMs reduced the A8 bias, which is evident for specific

group and lead time (Figs. 5i,j,k), even though it seems

nonexistent on average for the A8 (Fig. 5l). The KFAN

predictions seem to be the most successful in removing

bias, while the AN appears to exhibit the highest

correlation (Fig. 5h). Measured wind speed STD is

underestimated on average by the A8 model and

all PPMs (Fig. 6d), mostly because of the STD under-

estimation in the coastal area (group I). Overall, the

KFAS STD is the closest to the observed value.

To investigate the influence of the starting model used

to generate analogs, results are averaged over all lead

times for every group of stations. A reasonable hy-

pothesis could be that the more physical processes that

are directly simulated in the starting model (e.g., with

higher resolution), the better the forecast will be. The

RMSE (Fig. 7a) and bias (Fig. 7i) are lower for the A2

and the DA models than for the A8 in the coastal

complex terrain, empirically supporting this hypothesis.

The RCC does not differ significantly among different

models (Fig. 7e). It must be noted that it is difficult to

quantify the improvement of more detailed forecasts

over coarser ones using point-based verification metrics

(Rossa et al. 2008; Jolliffe and Stephenson 2011). Point-

based verification metrics tend to penalize spatial and

phase errors, contaminating finer-resolution simulations

more than coarser ones. Hence, it might be challenging

to easily demonstrate the true benefits of using higher-

resolution forecast. To determine if that is the case, it

would be advisable to do case studies and some sort

of special verification (for gridded forecasts). That is,

however, beyond the scope of this paper.

All PPMs tested in this study improve model pre-

dictions. This type of improvement is clearly evident, for

example, for the AN results in the coastal complex

terrain. The results show that the differences for using

different startingmodel configurations are much smaller

after postprocessing than for the three starting models.

It is to be expected that the ABPs (AN, KFAN, and

KFAS) also achieve better results when using the A2 or

the DA than when using the A8. The quality of an

analog should be better the more physical processes

are simulated in the starting model (i.e., with higher-

resolution, nonhydrostatic dynamics in the A2, etc.).

However, the RMSE (Figs. 7a–d), RCC (Figs. 7e–h),

2058 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



and bias scores (Figs. 7i–l) are similar for the PPMs

applied to all three starting models. For some scores,

such as the RMSE, the ABPs have the best results when

applied to the A8 model.

Overall, it seems that even though the higher-

resolution A2 and DA models achieve better results, the

ABPs based on the A2 and the DA do not statistically

outperform the ABPs based on the A8 (Figs. 7d,h,l). This

does not necessarily mean that improvements are not

made at all. The benefitsmight be partially hidden because

of the imperfections of the verification metrics used. To

investigate the benefits of using higher resolution further,

one can analyze the forecasts categorically (i.e., to examine

the forecasts of the rare events such as strong wind),

perform a spectral analysis, or look at the case study. It

is decided that the case studies are beyond the scope of

this paper, while the categorical verification results and

spectral analysis are presented in the next sections.

b. Wind speed as a categorical predictand

Wind speeds are divided into three categories: weak (or

no wind at all), moderate, and strong wind, depending

on the climatology of the corresponding group of stations.

For each lead time, thresholds are determined as the

50th and 90th percentile of the entire group, so they

vary according to diurnal cycle (Fig. 3). The categorical

verification procedure includes frequency bias (Fbias),

critical success index (CSI), and polychoric correlation

coefficient (PCC). The choice of these measures is

consistent with the continuous case. The CSI measures

the fraction of observed forecast events that are cor-

rectly predicted. It can be thought of as the relative

accuracy when correct negatives are removed from

consideration. The CSI therefore measures the error

(similar to the RMSE in continuous case). Sensitive to

hits, the CSI penalizes both misses and false alarms. It

does not distinguish the source of forecast errors and

hence additional verification measures need to be ex-

amined (Wilks 2011; Jolliffe and Stephenson 2011). The

Fbias, similarly to bias, measures the tendency to

forecast too often (Fbias greater than 1) or too rarely

(Fbias less than 1) a particular category (Wilks 2011;

Jolliffe and Stephenson 2011). The PCC measures as-

sociation of forecasts and observations in the contin-

gency table. The idea behind the PCC is to assign a

density function to the contingency table, and then cut

the domain into rectangles corresponding to the cells of

the contingency table. The PCC is the parameter value

of the bivariate normal density function for which the

volumes of the discretized distribution are equal to the

corresponding joint probabilities of the contingency

table (Juras and Pasarić 2006). Ekström (2011) shows

the (asymptotical) equivalence of the RCC and the PCC

under several conditions including that the number of

categories is as large as the number of measurement–

forecast pairs, the underlying joint distribution is

binormal, and so on. Even though a ‘‘simplified’’ RCC

can be recalculated if the ordinal variables arise from

discretization, such as groupings of values into cate-

gories (as in this section), it has some undesirable

properties. For instance, it can achieve a value of 1 even

if nondiscretized empirical variables are not perfectly

dependent. The PCC is therefore considered to be more

conservative and better suited for statistical infer-

ence concerning the association of the underlying,

nondiscretized variables than the RCC.

The PCC results for different forecasts (Figs. 8a–d) do

resemble the RCC results (Figs. 7e–h) when results are

averaged for all lead times in a certain group. The DA

and the A2 exhibit a similar association as the A8, re-

gardless of the terrain, as previously discussed. Associ-

ation is significantly improved by almost all PPMs in all

groups of stations and overall, as already presented. The

ABPs achieve better RCC and PCC results than the KF

in general, particularly the AN. There are some differ-

ences between the RCC and PCC results that need to be

highlighted in order to determine the origin—whether it

is due to statistical properties of the verification mea-

sure used or it is a direct consequence of discretization

(i.e., grouping of wind speed into three categories). If both

RCC and PCC are calculated for the same (ordered)

data and grouped into identical categories, the RCC

would have a slightly higher value (Ekström 2011). The

PCC shows higher values than the RCC calculated for

the continuous variable, hence confirming the assump-

tion that it is easier to predict the category than the exact

(continuous) value of wind speed.

There are a variety of Fbias results depending on the

exact model, group of stations, and wind category. For

instance, the DA predicts category 2 too often (Fig. 9e),

while predicting the other two categories (Figs. 9a,i) too

rarely in the coastal area. The Fbias results for the A8

model are somewhat similar, while the A2 is almost un-

biased in this case. All starting models underforecast

weak wind (Figs. 9b,c) while overforecasting moderate

and strong wind in the mountain complex and the nearly

flat terrain (Figs. 9f,g,j,k). The exact values differ for

different models and categories, yielding mixed results in

terms of determining the best-performing starting model.

The KF only slightly impacts the A8 Fbias by decreasing

the value for the weak wind (Fig. 9a), while only indi-

cating the increased value for the moderate and the

strong wind (Figs. 9e,i) in the coastal area. More gener-

ally, besides the Fbias reduction for the weak winds

(Figs. 9a–d), the KF does not have a noticeable impact on

the starting model results. Unlike the coastal area, in the
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mountain complex and the nearly flat terrain the KF

seems to be less biased than the corresponding (starting)

model for all cases tested. This is indicated by the sig-

nificantly smaller bias for the weak winds, and smaller

confidence intervals near the zero value for the moderate

and strong winds. The smaller confidence interval refer-

ring to the same sample size means smaller variability

within the results. The Fbias results for the ABPs (AN,

KFAN, and KFAS) seem to exhibit much less variety

depending on different group of stations. The results are

indistinguishable among different starting models, espe-

cially for the moderate and strong winds (Figs. 9e–l).

For any given group, the ABPs consistently overpredict

moderate wind speeds, while underpredicting rarer and

strongerwind. TheseABPs sometimes even underpredict

the occurrence of weak wind. The KFAS seems to be the

FIG. 7. (a)–(d) The average RMSE, (e)–(h) RCC, and (i)–(l) bias for three different starting models and the corresponding PPMs (KF,

AN, KFAN, and KFAS). The results are averaged over three groups and over all available locations during 2012. The colors represent

the starting model used (A8, A2, andDA), while the x tick labels stand for the forecasting method (model and corresponding PPMs). The

values of the 95% bootstrap confidence intervals are indicated by the error bars.
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least biased ABP, showing the highest values for strong

wind, while being as unbiased as the AN in the other two

categories. However, it needs to be mentioned that these

differences are not statistically significant, partially be-

cause of the small sampling size. Overall, the PPMs’

forecasts reduce bias for climatologically common

wind speed category (weak wind). The ABPs’ Fbias

results are not as variable as for the starting model and

the KF, inheriting only a slight difference from the

corresponding model for an exact method (AN, KFAN,

or KFAS). The main deficiency of the PPMs seems to be

underforecasting the occurrence of strong wind, with the

KFAS being the most successful (Fig. 9l).

If results among different starting models are com-

pared, it can be seen that for the weak wind the A2

produces higher CSI than the A8 and the DA in the

coastal complex terrain (Fig. 10a). Furthermore, finer

horizontal resolution slightly improves relative accu-

racy for strong wind (Fig. 10i). The results for moderate

wind are similar across the different starting models

(Fig. 10e). Increasing the horizontal resolution does not

necessarily improve CSI in the other groups of stations.

Because of small sample size, the results rarely differ

significantly (Figs. 10b,c,f,g,j,k). The CSI results are

considerably higher for the KF than for the starting

models (A8, A2, and DA) for the weak wind in the

mountain complex and the nearly flat terrain, but not as

much in the coastal area. The indication is that the KF is

the most successful in predicting the strong winds in

nearly flat continental terrain, and even though it is not

statistically significant, it might still suggest a dominant

systematic error in the models’ predictions of the strong

wind. The Fbias is lower for the KF than for any starting

model, which, combined with higher CSI, indicates

that the number of false alarms is reduced. Analysis

suggests that ABPs outperform starting models and

corresponding KF forecasts for all categories and all

groups of stations except the strong winds in the nearly

flat continental terrain (Fig. 10k). The improvement of

CSI value is the most evident, and statistically signifi-

cant, for the most common weak wind (Figs. 10a–d).

However, the larger sample is needed to prove such a

FIG. 8. The PCC for three different starting models (A8, A2, and DA) and the corresponding PPMs (KF, AN, KFAN, and KFAS). The

results are averaged for (a)–(c) three groups of stations and for (d) all locations during year 2012. The PCC is calculated using three

different categories, divided by the 50th and 90th percentiles. The values of the 95% bootstrap confidence intervals are indicated by the

error bars.

SEPTEMBER 2018 ODAK PLENKOV I �C ET AL . 2061



statement for the moderate and strong wind. Overall, all

PPMs improve the CSI value. The AN forecasts achieve

the best result for predicting weak wind (Fig. 10d), while

the KFAN and the KFAS produce slightly better results

than the KF and the AN for the other two categories

(Figs. 10h,l). It needs to be noted that the results for the

moderate and strong wind are rarely statistically signif-

icant, partially because of small sample size. However,

analysis suggests that the best results are achieved when

using theA2 as the startingmodel, mostly because of the

higher CSI in the coastal complex terrain than when

using a coarser-resolution starting model. It is possible

that additional improvements may be generated by in-

creasing the resolution (1 km or less) in the complex

terrain. The necessity to use even 2-km grid spacing

is, however, questionable and might be reexamined

for nearly flat continental terrain (i.e., by spectral anal-

ysis). In addition to improving the relative accuracy in

coastal complex terrain, the categorization suggests the

higher association for the full-physics A2 model and

FIG. 9. As in Fig. 8, but for Fbias.
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corresponding PPMs in the coastal complex and the

nearly flat continental terrain, as shown before. These

results combined might suggest that the higher-

resolution full-physics A2 model is better capable in

distinguishing low from moderate or unusually strong

wind, especially in the coastal complex terrain. This

capability is then mostly inherited by the different

PPMs, including the ABPs.

There is a decrease of the CSI values for moderate

and, in particular, strong wind, regardless of the exact

group of the stations or the forecast. It should be men-

tioned that that decrease is partially the direct conse-

quence of sensitivity of the CSI metrics to climatological

probability of the predefined category that is being

evaluated, and therefore it should be analyzed with

caution. The sensitivity to climatology (or base rate) is

due to counting the portion of correct forecasts that can

be accurately predicted by random chance. Also, the

different values across different groups for the same

category (e.g., strong winds in Figs. 10i,j,k) might mean

FIG. 10. As in Fig. 8, but for CSI.
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that unusually strong and rare wind is predicted more

easily in coastal than in continental areas, regardless of

the exact forecast.

c. Spectral analysis of wind speed

The small spatial and temporal errors of (generally)

well-simulated phenomena can profoundly change the

verification results (Mass et al. 2002; Rife et al. 2004).

For that reason, spectral analysis in the frequency

domain is utilized to provide a scale-dependent measure

of different PPMs’ performance. Spectral analysis allows

quantification of power distribution among different

temporal scales. It is relevant to determine the expo-

sure of particular stations to longer-than-diurnal (LTD),

diurnal (DIU), and shorter-than-diurnal (SD) motions

and the forecast ability to simulate these motions.

Spectral decomposition of detrended time series is

performed using the Welch periodogram-based method

(Welch 1967) with 50% overlapping segments. The

length of the Hamming spectral window (L 5 256) is

adjusted to optimally emphasize the difference among

tested PPMs. Missing data are provided by using linear

interpolation. It should be noted that power spectral

density (PSD) analysis performed contains the effect of

aliasing, necessarily contaminating all scales by oscilla-

tions with periods shorter than 6h (here corresponding

to the Nyquist frequency). Testing this effect on mea-

sured data suggests that it is rather small on LTD scales.

Significant effects may be found on SD scales, especially

near the periods corresponding to theNyquist frequency

(�Zagar et al. 2006; Hrastinski et al. 2015). Since the A8

and the DA forecasts are archived every 3 h (the A2 and

the measurements are adjusted to the same frequency),

it is not possible to circumvent this effect. However, it

may be noted that all the forecasts tested (and mea-

surements) are aliased in a similar manner; therefore,

the effect is not crucial for the intercomparison.

The PSD of 10-m wind speed is calculated for all

forecasts (all starting models and all corresponding

PPMs) at all locations for the entire year of 2012. The

forecast frequency is (3 h)21 for all forecasts, and only a

24-h forecast period is considered. It should be noted

that the typical diurnal rotation of winds in the Adriatic

partially hides the diurnal spectral peak if the analysis is

performed using wind speed values (Teli�sman Prtenjak

and Grisogono 2007). However, the preferred spectral

analysis of wind components is not possible, as theABPs

predict only the wind speed (not the direction). The

spectral analysis is performed for all forecasts and

locations included in this paper. However, it is decided

that it is more comprehensive to show the results for

several representative locations, instead of any sort of

averaging or summarizing the results. The particularities

that could not be easily seen in figures are pointed out

and explained in the text. Two locations (Dubrovnik and

Jasenice stations) correspond to the coastal group of

stations, covering the northern and the southern parts of

the coastline. The reason for including these two stations

is that the governing processes somewhat differ [e.g.,

processes that lead to bora windstorms as explained

in Horvath et al. (2009)]. The representative station for

nearly flat continental terrain is Osijek station, while

Ogulin represents the mountain complex terrain.

The PSD functions for the A8 and corresponding

PPMs’ wind speed are shown in Fig. 11. The KF ap-

proach influences the motions on the time scales longer

than 10 days if the model’s PSD function is biased. The

KF therefore enlarges the energy of these large-scale

motions in the coastal area and reduces the energy at the

nearly flat continental terrain. Besides the large-scale

motions, the KF does not significantly influence the

shorter time scale. Similarly, theKFAN is almost exactly

the same as the AN spectra, except with rarely signifi-

cant differences for large-scale motions. Very small

differences among spectra before and after application

of the KF algorithm might mean that the ratio of the

variances used in the algorithm is not optimal. If the

ratio of the variances is set too high, the filter puts ex-

cessive confidence on the past forecasts, therefore fail-

ing to remove any error. On the other hand, if the ratio is

too low, the filter will be unable to respond to changes in

bias (DelleMonache et al. 2006). The sensitivity of these

results to changing the ratio of the variances used in the

algorithm therefore might be tested in the future work.

The KF spectra is the same as model spectra and the

KFAN spectra is the same as the AN spectra for the

scales shorter than 10 days. The same conclusions re-

garding spectral analysis are therefore valid hereinafter.

Hence, the analysis for the KF or the KFAN will not be

explicitly mentioned.

It can easily be seen that the largest portion of mea-

sured power at all stations is associated with the LTD

motions. These LTDmotions are more energetic for the

coastal area (Jasenice andDubrovnik stations, Figs. 11a,d)

than for the mountain complex (Fig. 11g) and nearly

flat continental terrain (Fig. 11j). As shown by several

other authors, this is related to the strong and gusty bora

wind (e.g., Horvath et al. 2009, 2011; Hrastinski et al.

2015). The LTD motions are severely underestimated

with the A8 model in the coastal area (Figs. 11a,d). The

LTD motions in the AN and the KFAS data contain

more energy compared to the model PSD, therefore

improving the model. This shows a great potential for

the ABPs to improve the model forecast when there is a

model underestimation of LTD motion, even in the

complex terrain. In the nearly flat terrain, the A8 model
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simulates well, or overestimates, the energy of LTD

motions (Fig. 11j). The ABPs (AN, KFAN, and KFAS)

lower the energy of LTD motions if they are well sim-

ulated or overestimated by the model. This sometimes

leads to underestimation of LTDmotions, especially for

the AN. The KFAS exhibits LTD PSD spectra very

similar to measurements. Thus, the KFAS shows the

greatest potential for the forecast improvement if the

model overestimates the energy of LTD motions in

the nearly flat terrain. The A8 results for LTD motions

in the mountain complex consist of all previously men-

tioned scenarios, depending on the location and the

exact time scale. For instance, it is well simulated for

periods longer than three days and underestimated

for shorter time scales at Ogulin station (Fig. 11g).

The ABPs act similarly to previous types of terrain,

exhibiting more energy if they are underestimated by

the A8 model, or less if they are not.

The SDmotions are severely underestimated by theA8

model for the majority of locations, regardless of the

terrain (e.g., Horvath et al. 2011). Only at a few stations

(e.g., Osijek in Fig. 11j) is the amount of energy at these

scales comparable to measured values. The AN forecast

is, once again, the most prone to energy underestimation.

The SD KFAS spectra, on the other hand, seem very

similar to model spectra. Moreover, it seems that the

KFAS exhibits PSD values similar to the AN and ob-

servations for longer time scales, but it is similar tomodel

values at shorter time scales. Finally, it is interesting

to note that even though energy of the SD motions is

underestimated, the harmonics of the diurnal cycle (24-,

12-, and 8-h periods) are very well simulated by the A8

model and all of the PPMs.

Introducing the higher-resolution orography affects

the dynamical processes and increases the amount of

energy at all temporal scales (e.g., �Zagar et al. 2006).

Therefore, the difference between the A8 and the

DA is that there is almost no underestimation of the

LTD motions, even in the coastal complex area (e.g.,

Fig. 11c). The exception is Dubrovnik station (Fig. 11f),

which is very similar as for the A8 model (Fig. 11d). The

energy simulated by the DA is higher at the mountain

complex station (Fig. 11i) than when simulated with the

A8 (Fig. 11g), overestimating the LTD motions. Intro-

ducing the higher-resolution orography into nearly flat

continental terrain results in very similar PSD curves for

the DA, as is the case for the A8 (e.g., cf. Figs 11l and

11j). This is to be expected because the flatter the ter-

rain, the smaller the number of details added by in-

creasing horizontal resolution. In the mountain complex

terrain (e.g., Ogulin station), resultsmay be improved by

using even finer model resolution to represent local

flows. However, the need for using 2-km as opposed to

8-km grid spacing for weak wind in the nearly flat con-

tinental terrain (e.g., Osijek station) may be questioned.

Naturally, the PPMs are also exhibiting a similar effect,

as is the case for the A8 model.

Similarly, introducing higher-resolution fields into the

A2 forecasts increases the power at all time scales. All

the conclusions regarding PSD spectra that are valid for

the DALTDmotions are valid for theA2model as well.

Additionally, because of a more complete package of

physics parameterizations and nonhydrostatic effects,

the A2 model SD part of PSD spectra contains more

energy than for the A8 and the DAmodels. Both the A8

and theDAmodels severely underestimate the power at

scales below diurnal, as reported by �Zagar et al. (2006).

Unlike the A8 and the DA models, the A2 sometimes

overestimates the SD motions. That is especially the

case in the coastal complex area (e.g., Fig. 11b). When

the model overestimates the SD motions, the ABPs re-

duce the SD power, often leading to underprediction of

SD motions. The AN forecast often severely lacks

power for these SD motions, whereas the KFAS per-

forms better. There is no energy overestimation by the

A2 model for SD motions in the mountain complex

terrain nor in the nearly flat continental terrain. The

energy is well simulated or underpredicted by all fore-

casts tested, and the best results are produced when

using either the A2 model or the KFAS (Figs. 11e,h,k).

Finally, as it can be seen at Fig. 11b, if a model over-

predicts the amplitudes of diurnal cycle harmonics, the

analog approach is able to reduce them.

7. Conclusions

Different postprocessing methods (PPMs) are com-

pared in this study, based on a historical dataset in-

cluding three different mesoscale model runs with 8-km

grid spacing [ALADIN (A8)] and 2-km grid spacing

[ALADIN (A2); dynamical adaptation (DA)], as well as

verifying observations of 10-m wind speed. By analyzing

root-mean-square error (RMSE), rank correlation co-

efficient (RCC), and bias of the mean, it is shown that all

tested PPMs improve results of the A8 starting model.

The best results are obtained for the analog-based

predictions (ABPs) when using 15 analog ensemble

members. The RMSE and bias growth are noticed for

larger ensembles, probably because of climatological

differences between training and verification periods.

The PPMs reduce RMSE and bias when compared to

the startingmodel. TheKF and the forecastingKF of the

analog ensemble mean (KFAN) are the most successful

PPMs for the bias reduction. That is the expected result

since the KF algorithm is constructed to remove the

systematic error if it does not change rapidly (i.e., large
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FIG. 11. The PSD of the observed 10-m wind speed, starting model forecasts (A8, A2, and DA) and the corresponding PPMs (KF, AN,

KFAN, and KFAS) for stations Jasenice, Dubrovnik, Ogulin, and Osijek during year 2012. The confidence intervals (in the logarithmic

scale) are noted by the cross-like symbol in the upper-right corner of each plot.
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day-to-day variations). However, the application of

the KF algorithm can also lead to the decrease of the

correlation coefficient (i.e., increase of the dispersion

error). The dispersion error is noticeably reduced by the

KF approach in the flat terrain, where there are some

indications of a systematic error influencing large-scale

(i.e., period longer than 10 days) strong wind in the

model. The KF is not as successful in reducing the dis-

persion error in the coastal complex area. The ABPs

reduce dispersion error (i.e., improve RCC) regardless

of the terrain complexity, showing greater adaptability

than the KF forecast. Forecasting the analog ensemble

mean (AN) seems to be the most suitable PPM for the

RCC improvement.

The standard deviation (STD) of the KF forecasts is

closer to the observed STD than the ABPs. The under-

estimation of the measured STD for the ABPs is partially

explained by climatological differences between training

and testing periods. The AN forecast is the most prone to

systematic underestimation of the STD. This is due to

additional averaging when forecasting the ensemble

mean, thus naturally reducing the variability of the fore-

cast. This systematic error is partially removed by the

application of the KF algorithm in the KFAN forecast.

The KFAS forecast exhibits the highest STD among the

ABPs because of better adaptability. Even though

the ABPs affect different aspects of the starting model,

the RMSE reduction is very similar among them and

superior to the KF approach. This is especially the case in

the coastal complex terrain.

Comparison of PPMs’ performance with starting

models at 2-km grid spacing (A2; DA) compared to the

PPMs’ performance with the A8 as a starting model

shows that PPMs considerably improve numerical pre-

dictions for all tested model resolutions. We furthermore

test the hypothesis that the greater the representation of

physical processes directly simulated by the starting

model, the better the quality of the analogs. Even though

the higher-resolution starting models yield better statis-

tical results themselves, it is not necessarily the case

for the ABPs generated by the higher-resolution model.

This may be due to the imperfections of the point-based

verification metrics used that typically increase with

resolution at near-kilometer-scale grid spacing of numeri-

cal models (i.e., high sensitivity to spatial and phase

errors). Therefore, the categorical and spectral analyses are

performed to explore the potentially undetected benefits of

using the higher-resolution models further.

To assess the performance of forecasts for different

wind speeds, we perform a categorical verification using

threewind speed categories: weak,moderate, and strong

wind. Overall, starting models forecast weak wind oc-

currence too rarely and moderate wind occurrence too

often. For coastal complex terrain, different starting

models yield different frequency bias. For other terrain

types (mountain complex and nearly flat continental),

all starting models tested in this study underforecast the

frequency of weak wind and overforecast the frequency

of moderate and strong wind. All PPMs significantly

reduce the frequency bias for climatologically common

wind speed category on average. The main challenge for

ABPs seems to be the underforecasting of strong wind

occurrence, while the results for the KF are slightly less

biased. The KFAS seems to be the least biased ABP,

showing the best result for strong wind, while being as

unbiased as the AN in the other two categories. It has to

be noted that because of the small sample size, the re-

sults in the moderate and strong wind speed categories

exhibit very large confidence intervals, providing only

indications of the PPMs’ ability to improve the starting

model forecast.

The KF has considerably higher critical success index

(CSI) than the startingmodels for theweakwind category

in the nearly flat continental and mountain complex ter-

rain, but not as much in the coastal complex terrain.

Results suggest that the CSI result is improved for the

moderate and strong winds. The ABPs seem to outper-

form both starting models and corresponding KF fore-

casts for all the cases tested, except the prediction of the

strong wind in the nearly flat continental terrain. The KF

seems to be the best PPM in this case, once again

suggesting consistent model error when predicting strong

wind. The AN achieves the highest CSI for weak wind,

while the KFAN and the KFAS seem to be better in

predicting the other categories. However, the results

corresponding to moderate and strong winds should be

further reinforced using a larger sample size. Using finer

horizontal resolution might lead to the improvements for

the CSI for starting model predictions of the strong wind

in the coastal complex terrain. This suggests that finer

resolution might lead to a better ability of the forecast in

distinguishing low from moderate or unusually strong

wind. This horizontal resolution increase yields mixed

results for other categories and terrain types, potentially

due to statistical imperfections of the metrics. This

property is then inherited by all of the PPMs.

The spectral analysis confirmed that the KF approach

affects only large-scale motions (i.e., period longer

10 days) if the power spectral density (PSD) function is

biased. The KF thus enlarges the energy of the large-

scale motions in the coastal area and reduces the energy

of the large-scale motions it the nearly flat continental

terrain. The possibly too conservative KF approach

might be slightly adjusted by optimizing the parameters

of the KF algorithm. However, the KF does not signifi-

cantly influence the shorter time scale.
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Unlike the KF approach, introducing past similar

situations in the ABPs leads to better forecasting pro-

cesses on longer-than-diurnal (LTD) scales. The LTD

scales are much more relevant than the larger scales

(with a period longer than 10 days) for forecasts up to

72 h ahead. The ABPs improve model underestimation

of the LTDmotions in the coastal area and in the nearly

flat terrain when the model overestimates the LTD

motions. The KFAS method is superior to the other

PPMs because it maintains the modeled energy for the

shorter-than-diurnal (SD) part of the power spectra

(unlike the AN), while it improves both under- and

overestimation of theLTDmotion energy (just as good as

or better than the AN). Furthermore, higher-resolution

models generally contain more energy. Consequently,

there are fewer situations with the underprediction of

large-scale motions. But when they do occur, the PPMs

behave as presented for the lower-resolution A8 model.

Even though the ABPs often underpredict the SD mo-

tions, they simulate the correct amplitude of diurnal

cycle harmonics (24-, 12-, and 8-h) similarly to the

model. Additionally, even if the model overpredicts the

amplitudes of diurnal cycle harmonics, the analog ap-

proach reduces them.

The performed verification shows that all analyzed

PPMs improve upon the starting model forecasts. The

level of improvement depends on the type of terrain,

starting model, and verification metric. Each tested

PPM has its strengths and weaknesses, and the choice

for operational use of those methods depends on the

envisaged purpose. The results are presented in such

manner that after a simple statistical analysis of the

potential starting model, one can thus decide which

PPM is the most applicable for a specific situation.

Summarily, the AN exhibits the highest correlation with

measurements. It is thus applicable if the model is un-

biased, but the dispersion error needs to be removed.

The KF and the KFAN are the most successful in re-

moving bias, whereas the KFAN is better suited if the

terrain is more complex. TheABPs exhibit better results

than KF in the complex terrain in general, especially the

coastal area. If the focus is on the prediction of the weak

wind, then the AN is the most suitable, whereas for the

strong wind the analog approach is better suited when

combined with the KF (i.e., KFAS). The KF algorithm

affects only the large-scale flows (i.e., enlarges the en-

ergy of these large-scale motions in the coastal area and

reduces the energy at the nearly flat continental terrain

for the periods longer than 10 days), while the ABPs

affect smaller scales. If the starting model PSD spectra

are biased, the KFAS method is superior to the other

ABPs. The superior adaptability of the KFAS results in

an STD that is the closest to the measured STD.

Additionally, results of the PPMs are further im-

proved if higher-resolution (convection permitting)

starting model data are used in the coastal complex

terrain. Introducing the higher-resolution modeling in

nearly flat continental terrain results in very similar PSD

curves. The PPMs exhibit at least as good of a result when

using the coarser horizontal resolution, if not better.

Therefore the need for using a 2-km as opposed to 8-km

grid spacing model may be questioned. On the other

hand, the higher-resolution modeling increased the en-

ergy available for all of the time scales in the mountain

complex terrain. The latter, however, yielded mixed

results when using the other verificationmetrics for both

the starting models and corresponding PPMs. In this

case, the results may be improved by using even finer

model resolution than 2km to represent local flows.

Finally, future contributions could also focus on prob-

abilistic predictions, taking full advantage of the distri-

bution sampled by the ensemble, which may be more

suitable, particularly for the prediction of rare events.
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Stane�sić, A., 2011: Assimilation system at DHMZ: Development

and first verification results. Croat. Meteor. J., 44/45, 3–17.
Teli�sman Prtenjak, M., and B. Grisogono, 2007: Sea/land breeze

climatological characteristics along the northern Croatian

Adriatic coast. Theor. Appl. Climatol., 90, 201–215, https://

doi.org/10.1007/s00704-006-0286-9.

Termonia, P., 2008: Scale-selective digital filter initialization.Mon.Wea.

Rev., 136, 5246–5255, https://doi.org/10.1175/2008MWR2606.1.

Tudor, M., and S. Ivatek-�Sahdan, 2002: The MAP-IOP 15 case

study. Croat. Meteor. J., 37, 1–14.
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