METEOROLOŠKI I HIDROLOŠKI Bilten

3 / 2005
SADRŽAJ

VREMENSKE PRILIKE ... 5
 Sinoptička situacija (Marija Mokorić, dipl. inž.) .. 5
 Klimatološka analiza (Marina Mileta, dipl. inž.) .. 7
 Stanje mora (Vlatko Vukičević, dipl. inž.) .. 11

HIDROLOŠKE PRILIKE ... 13
 Površinske vode (Tomislava Bošnjak, inž.) ... 13
 Podzemne vode (Dario Kompar, dipl. inž.) ... 17

EKOLOŠKE PRILIKE ... 19
 Meteorološke karakteristike (Vesna Đuričić, dipl. inž.) 19
 Onečišćenje zraka i oborine (mr. sc. Višnja Šojat) 21
 Kakvoća zraka (Predrag Hercog, dipl. inž.) ... 21

BIOMETEOROLOŠKE PRILIKE (mr. sc. Ksenija Zaninović) 23

AGROMETEOROLOŠKE PRILIKE (mr. sc. Dražen Kaučić) 25

MIJERENJE KONCENTRACIJE PELUDA U ZRAKU (Lidija Srnec, dipl. inž., dr. sc. Renata Peternel) 28

PRILOZI

22. OŽUJAK SVjetskog meteoroLoškog Dana Voda
(dr. sc. Dušan Trninić) .. 31

OBILJEŽAVANJE SVjetskog meteoroLoškog Dana 2005.
(mr. sc. Ivan Čačić, dr. sc. Krešo Pandžić, mr. sc. Višnjica Vučetić) 34

SVjetski meteoroLoški Dana 2005.
(prijedor: Davor Nikolić, dipl. inž.) .. 37

TRlNASTA SJEDNICA POVRJENSTVA ZA OSNOVNE SUSTAVE
SVjetske meteoroLoške organizacije
(mr. sc. Ivan Čačić, dr. sc. Krešo Pandžić) .. 40

IZVJEŠTAJ O SLUŽBENOM PUTU "RSMC WORKSHOP"
(dr. sc. Vlasta Tuttiš, dr. sc. Branka Ivančan-Picek) 43

IZVANREDNI METEOROLOŠKI I HIDROLOŠKI DOGAĐAJI
U NOVINSKIM IZVJEŠĆIMA U HRVATSKOJ U OŽUJU 2005. GODINE
(Davor Nikolić, dipl. inž.) .. 44
VREMENSKE PRILIKE

Sinoptička situacija

Od 1. do 7. ožujka bilo je vrlo hladno, u Gospiću i Otočcu izmjereno je -21 Celzijev stupanj.

Dana 13. i 14. ožujka posvuda je zatoplilo, a ponegdje je palo malo kiše.
U sklopu prostrane ciklone koja je zahvaćala sjevernu, srednju i dio južne Europe, nad sjevernom Italijom je nastalo sekundarno ciklonalno polje. Stoga je i nad našim područjem kružio vlažan zrak, pa je bilo promjenljive naoblake, tek ponegdje s malo kiše. Uspostavila se zapadna visinska struja, te je bilo toplije.

Između 15. i 19. ožujka prevladavalo je sunčano i sve toplije. U Sisku je 16. ožujka temperatura zraka bila 21 Celzijev stupanj.

Tih je dana na vrijeme u Hrvatskoj sve naglašenije utjecao ogranak polja visokog tlaka zraka iz Sredozemlja. Po visini je bio termobarički greben. Posvuda je bilo sunčano i iznadprosječno toplio.

Od 20. do 22. ožujka osjetno je zahladilo, a od 22. do 26. ponovno je bilo toplije.

27. i 28. ožujka bilo je promjenljivo oblačno, mjestimice s kišom.

Ciklona je 27. ožujka bila nad sjevernom Italijom i sjevernim Jadranom i premještala se preko naših krajeva. Bilo je umjereno do znatno oblačno s povremenom kišom. Na sjevernom Jadranu palo je mjestimice više od 100 mm kiše. U početku je puhalo jugo, a kasnije s odmicanjem ciklone na istok djelomice se razvedrilo.

Od 28. do 31. ožujka bilo je djelomice ili pretežno sunčano, te ponovno hladnije.
Prizemno je nad našim područjem bilo polje malo povišenog tlaka uz zapadno i jugozapadno visinsko strujanje. Bilo je malo hladnije, na Jadranu s povremenom burom, a u unutrašnjosti je ponedjelje bilo magle.

Slike 1 i 2 prikazuju prizemnu sinoptičku situaciju 7. odnosno 16. ožujka, a slike 3 i 4 satelitsku snimku oblaka 27. i 28. ožujka 2005. godine u vidljivom dijelu spektra.

Klimatološka analiza

U ožujku su srednje mjesečne temperature zraka bile niže od prosjeka (1961.-1990.). Temperaturna odstupanja su se kretala od -0.3°C na Visu i Lastovu do 2.0°C u Osijeku i Daruvaru. Prema raspodjeli percentila, temperature prilike bile su u kategoriji "normalno" i "hladno".

Najtoplija od promatranih lokacija je bila Komiža na otoku Visu. Srednja mjesečna temperatura zraka tamo je iznosila 10.9°C.

Najhladnije, sa najnižom srednjom mjesečnom temperaturom zraka bilo je, osim na višim nadmorskim visinama (Zavižan, -3.1°C, Puntijarka, 0.4°C), u Gospiću, 1.7°C.

Najniže temperature zraka (apsolutni minimumi) su na svim promatranim lokalacijama bile negativne i kretale su se od -2.2°C u Komiži do -23.6°C u Gospiću.

U Gospiću i Ogulinu se radi o rekordno niskim zimujskim apsolutnim minimumima.

Apsolutni maksimumi kretali su se od 12.1°C na Zavižanu do 24.1°C u Zagrebu u Maksimiru, te u Sisku.

Dnevne temperature zraka (srednje, minimalne i maksimalne) su od početka mjeseca bile znatno niže od prosjeka, pogotovo dnevne minimalne temperature zraka.

Slika 5. Srednja dnevna temperatura zraka (Zagreb-Grič) za OŽUJAK 2005. godine u usporedbi s dugogodišnjim srednjim vrijednostima (T) i standardnim devijacijama (σ) (1862-2004.)

ekstremno hladno
vrlo hladno
hladno
normalno
topo
vrlo topo
ekstremno topo

<2
2-9
9-25
25-75
75-91
91-98
>98

PERCENTILI

<table>
<thead>
<tr>
<th>postaja</th>
<th>A</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik</td>
<td>86</td>
<td>47</td>
</tr>
<tr>
<td>M. Lošinj</td>
<td>83</td>
<td>41</td>
</tr>
<tr>
<td>Komiža</td>
<td>81</td>
<td>38</td>
</tr>
<tr>
<td>Osijek</td>
<td>80</td>
<td>36</td>
</tr>
<tr>
<td>Zagreb</td>
<td>73</td>
<td>33</td>
</tr>
<tr>
<td>Poreč</td>
<td>65</td>
<td>31</td>
</tr>
<tr>
<td>Zadar</td>
<td>65</td>
<td>30</td>
</tr>
<tr>
<td>Rijeka</td>
<td>64</td>
<td>29</td>
</tr>
<tr>
<td>Knin</td>
<td>63</td>
<td>28</td>
</tr>
<tr>
<td>Sisak</td>
<td>62</td>
<td>27</td>
</tr>
<tr>
<td>Varaždin</td>
<td>62</td>
<td>26</td>
</tr>
<tr>
<td>Sl. Brod</td>
<td>62</td>
<td>25</td>
</tr>
<tr>
<td>Ogulin</td>
<td>62</td>
<td>24</td>
</tr>
<tr>
<td>Varaždin</td>
<td>62</td>
<td>23</td>
</tr>
<tr>
<td>Rijeka</td>
<td>62</td>
<td>22</td>
</tr>
</tbody>
</table>

Slika 7. Odstupanje srednje mjesečne temperature zraka (°C) u OŽUJKU 2005. od prosječnih vrijednosti (1961-1990.).

Slika 8. Mjesečne količine oborine u OŽUJKU 2005. godine izražene u (%) prosječnih vrijednosti (1961-1990.).
Slika 9. Maksimalne i minimalne dnevne temperature zraka (°C) i dnevne količine oborina (mm) u OŽUJKU 2005. godine
Slika 10. Srednje dnevne temperature zraka (°C) i njihove anomalije (°C) od dnevnog srednjaka za razdoblje 1961-1990. u OŽUJKU 2005. godine
Radilo se o iznimno hladnom početku ožujka. U Ogulinu, gdje je 2. ožujka minimalna temperatura zraka iznosila -20.4°C, (slika 9), bilo je 18.9°C hladnije od odgovarajućeg prosjeka za taj dan. U drugoj dekadi ožujka su temperature zraka poprimile vrijednosti više od prosjeka, a zatim su do kraja mjeseca prevladavala pozitivna odstupanja koja nisu bila znatna.

Analiza izuzetnosti srednjih dnevnih temperatura zraka radi se za opservatorij Zagreb-Grič (koristi se cijeli niz 1862.-2004.) i za Split Marjan (koristi se raspoloživi niz 1948.-2004.).

Ocjena izuzetnosti se temelji na kriteriju prema kojem se izvanredno toplim smatra dan u kojem pozitivna anomalija premaši dvije standardne devijacije, dok se izuzetno hladnim smatra dan u kojem negativna anomalija premaši dvije standardne devijacije. Na dvije promatrane postaje 1. i 2. ožujka su bili izvanredno hladni dani, a u Splitu i 5. ožujka.

Oborine je uglavnom bilo manje od prosjeka. Količine su se kretale od 30% prosječnog iznosa u Komiži na otoku Visu do 120% prosjeka u Osijeku. Oborinske prlike su bile uglavnom u kategoriji “normalno”, zatim manja područja u kategoriji “sušno” a jedino područje Zavižana i Zagreba u kategoriji “vrlo sušno”.

Maksimalna dnevna količina oborine je iznosila najviših 50.8 mm u Gospiću, te 36.6 mm u Zadru.

U ožujku je broj dana sa snijegom => 1 cm zabilježen na svim kontinentalnim postajama. Broj tih dana se kretao od 1 u Kninu do 31 na Zavižanu, i bio je veći od prosjeka. Odstupanje tih dana od ožujskog prosjeka se kretalo od 12 dana u Gospiću do 1 dan u Kninu i na Zavižanu. Maksimalna visina snijega je iznosila 193 cm na Zavižanu, 114 cm na Puntijarki, 80 cm u Ogulinu itd.

Srednja mjesečna temperatura mora iznosila je u Splitu 11.6°C a u Komiži na otoku Visu 14.2°C.

Stanje mora

Temperature mora za ožujak dostupne su za meteorološke postaje: Rab, Šibenik, Split, Komižu, Hvar i Dubrovnik.

Na slici 12 prikazane su srednje dnevne temperature mora za pojedine postaje, uspoređno s višegodišnjim srednjacima te standardnim devijacijama.

Početak ožujka bio je nastavak neobičajeno hladne veljače, iako je temperatura zraka polako rasla, a osjetno je zatoplilo nakon prvih desetak dana ožujka. U skladu s tim i temperatura mora skoro na svim postajama je postupno rasla, tako da je krajem mjeseca posvuda bila malo viša od višegodišnjeg prosjeka.

Najsporiji rast temperature mora zabilježila je postaja Šibenik, zatim Split. Najveći porast je zabilježen na postaji Rab, gdje je početkom mjeseca bilo najhladnije, a najveće pozitivno odastupanje od višegodišnjeg prosjeka.

Izuzetak je postaja Dubrovnik, kod koje je temperatura mora kroz čitavo razdoblje bila iznad
Slika 12. Temperature mora u OŽUJKU (°C), za meteorološke postaje Rab, Dubrovnik, Šibenik, Split, Komižu i Hvar, višegodišnji srednji temperature mora i standardne devijacije.
višegodišnjeg prosjeka, a manji pad temperature vidjeti se otprilike u vrijeme kada je ona na svim ostalim postajama počela osjetnije rasti. Podatke ove postaje treba uzeti s određenom rezervom, kolikom, to tek treba vidjeti.

Osim temperature mora za navedene meteorološke postaje, za ožujak su dostupne još i temperature mora dobivene iz podataka brodskih meteoroloških službi, a to tek treba vidjeti.

Podaci brodskih meteorološke službe

Podaci brodova koji su uključeni u shemu dragovoljnog mjerenja i opažanja SMO se palju u međunarodnu razmjenu, a naknadno su dostupni iz brodskog meteorološkog dnevnika. Približne pozicije na kojima se u veljači obavljena mjerenja i opažanja vide se na slici 11.

Mjerenja i opažanja se obavljaju u glavnim sinoptičkim terminima: 00.00., 06.00., 12.00. i 18.00. te u međuterminima: 03.00., 09.00., 15.00. i 21.00. UTC. U nestandardnim terminima izvješća se predaju kada nije moguće obaviti mjerenja i opažanja u glavnim, ili u međuterminima, obično zbog otežanih uvjeta navigacije, ali u ožujku nije bilo izvješća u nestandardnim terminima.

HIDROLOŠKE PRILIKE

Površinske vode

Veći dio ožujka su obilježili vrlo visoki vodostaji. Do toga je najprije došlo zbog naglog zatopljenja i topljenja debelog snježnog pokrivača, a zatim i kiša koje su pale na već zasićeno tlo i puno korito.

Vodostaji Save su u prvoj dekadi mjeseca imali lagani trend opadanja. Zbog naglog zatopljenja i topljenja snježnog pokrivača, vodostaji su početkom druge dekade zabilježili rast. U gornjem toku su se nešto viši vodostaji zadržali desetak dana, i bili su u domeni srednje niskih vodostaja, dok su se na srednjem i donjem dijelu Save visoki vodostaji zadržali do kraja mjeseca i kretali su se u domeni srednje visokih do visokih vodostaja. Zbog toga je na cijelom tom dijelu Save vodotoke proglašeno pripremno stanje obrane od poplava, a kod Županje je 20. ožujka uvedena i redovna obrana od poplava, koja je bila na snazi do kraja mjeseca. Na kraju mjeseca, 30. ožujka, i kod Jasenovca je uvedena redovna obrana od poplava. Ovako dugotrajni visoki vodostaji su uzrokovali i nešto veću vodnost, pa su u donjem dijelu Save zabilježeni suficiot otjecanja iznosili 20%. Vodnost je jedino bila nešto manja kod Zagreba. Tu se pak, deficit otjecanja kretao oko 22%.

Na Dravi su u prvoj dekadi zabilježeni vodostaji bili u domeni niskih vodostaja i to bez značajnih oscilacija. Nakon toga je na Dravi, kao i na drugim vodotocima, došlo do porasta vodostaja zbog naglog topljenja snježnog pokrivača. U gornjem dijelu Drave su zabilježena dva vodna vala, koja su se kretala do visine srednjih vodostaja, dok su u donjem dijelu vodostaji sami, rasli a taj rast je bio posljedica i visokog vodostaja Dunava. Zbog toga su vodostaji u donjem dijelu Drave bili u domeni srednje visokih i visokih vodostaja. Vodnost je u gornjem dijelu bila nešto manja i zabilježeni deficit otjecanja kod Botova je iznosio 28%. U donjem dijelu vodnost je bila u granicama prosječnih vrijednosti, nekoliko dana bili u domeni visokih vodostaja. U gornjem toku vodnost je bila u granicama prosječnih vrijednosti, a u donjem nešto veća, tako da je kod Jamničke Kiseliće zabilježen suficit otjecanja od 28%.

Na Kupi su u prvoj dekadi mjeseca vodostaji bili u stagnaciji, a zatim su zabilježena tri uzastopna vodna vala. Na početku mjeseca vodostaji su se uglavnom kretali u domeni niskih vodostaja, a zatim veći dio ostatka mjeseca u domeni srednje niskih vodostaja. Jedino su u donjem dijelu Kupe za vrijeme najviših vodostaja, nekoliko dana bili u domeni srednjih vodostaja. U gornjem toku vodnost je bila u granicama prosječnih vrijednosti, a u donjem nešto veća, tako da je kod Jamničke Kiseliće zabilježen suficit otjecanja od 28%.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q(_{\text{min}})</td>
<td>nQ(_{\text{min}})</td>
<td>sQ(_{\text{min}})</td>
</tr>
<tr>
<td></td>
<td>m(^3)/s</td>
<td>dan</td>
<td>m(^3)/s</td>
</tr>
<tr>
<td>Sava</td>
<td>Zagreb</td>
<td>90,1</td>
<td>07.03.</td>
</tr>
<tr>
<td></td>
<td>Jasenovac</td>
<td>239</td>
<td>10.03.</td>
</tr>
<tr>
<td></td>
<td>Slavonski Brod</td>
<td>490</td>
<td>10.03.</td>
</tr>
<tr>
<td></td>
<td>Županja</td>
<td>673</td>
<td>12.03.</td>
</tr>
<tr>
<td>Kupa</td>
<td>Kamanje</td>
<td>18,0</td>
<td>08.03.</td>
</tr>
<tr>
<td></td>
<td>Jamnička Kiselica</td>
<td>47,3</td>
<td>08.03.</td>
</tr>
<tr>
<td>Mura</td>
<td>Murisko Središće</td>
<td>46,1</td>
<td>02.03.</td>
</tr>
<tr>
<td>Drava</td>
<td>Botovo</td>
<td>141</td>
<td>10.03.</td>
</tr>
<tr>
<td></td>
<td>Donji Miholjac</td>
<td>243</td>
<td>06.03.</td>
</tr>
<tr>
<td></td>
<td>Q(_{\text{sred}})</td>
<td>nQ(_{\text{sred}})</td>
<td>sQ(_{\text{sred}})</td>
</tr>
<tr>
<td></td>
<td>m(^3)/s</td>
<td>dan</td>
<td>m(^3)/s</td>
</tr>
<tr>
<td>Sava</td>
<td>Zagreb</td>
<td>266</td>
<td>91,9</td>
</tr>
<tr>
<td></td>
<td>Jasenovac</td>
<td>915</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>Slavonski Brod</td>
<td>1407</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>Županja</td>
<td>1751</td>
<td>456</td>
</tr>
<tr>
<td>Kupa</td>
<td>Kamanje</td>
<td>92,3</td>
<td>18,8</td>
</tr>
<tr>
<td></td>
<td>Jamnička Kiselica</td>
<td>302</td>
<td>74,7</td>
</tr>
<tr>
<td>Mura</td>
<td>Murisko Središće</td>
<td>138</td>
<td>75,1</td>
</tr>
<tr>
<td>Drava</td>
<td>Botovo</td>
<td>299</td>
<td>217</td>
</tr>
<tr>
<td></td>
<td>Donji Miholjac</td>
<td>426</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>Q(_{\text{maks}})</td>
<td>nQ(_{\text{maks}})</td>
<td>sQ(_{\text{maks}})</td>
</tr>
<tr>
<td></td>
<td>m(^3)/s</td>
<td>dan</td>
<td>m(^3)/s</td>
</tr>
<tr>
<td>Sava</td>
<td>Zagreb</td>
<td>561</td>
<td>18.03.</td>
</tr>
<tr>
<td></td>
<td>Jasenovac</td>
<td>1689</td>
<td>30.03.</td>
</tr>
<tr>
<td></td>
<td>Slavonski Brod</td>
<td>2364</td>
<td>31.03.</td>
</tr>
<tr>
<td></td>
<td>Županja</td>
<td>3021</td>
<td>31.03.</td>
</tr>
<tr>
<td>Kupa</td>
<td>Kamanje</td>
<td>248</td>
<td>19.03.</td>
</tr>
<tr>
<td></td>
<td>Jamnička Kiselica</td>
<td>705</td>
<td>20.03.</td>
</tr>
<tr>
<td>Mura</td>
<td>Murisko Središće</td>
<td>376</td>
<td>20.03.</td>
</tr>
<tr>
<td>Drava</td>
<td>Botovo</td>
<td>482</td>
<td>19.03.</td>
</tr>
<tr>
<td></td>
<td>Donji Miholjac</td>
<td>642</td>
<td>29.03.</td>
</tr>
</tbody>
</table>

Q\(_{\text{min}}\) = minimalni protok u mjesecu (satna vrijednost)

nQ\(_{\text{min}}\) = najmanji minimalni protok u razdoblju

sQ\(_{\text{min}}\) = srednji minimalni protok u razdoblju

vQ\(_{\text{min}}\) = najveći minimalni protok u razdoblju

Q\(_{\text{sred}}\) = srednji protok u mjesecu (srednja vrijednost, 06 i 18 sati)

nQ\(_{\text{sred}}\) = najmanji srednji protok u razdoblju

sQ\(_{\text{sred}}\) = srednji protok u razdoblju

vQ\(_{\text{sred}}\) = najveći srednji protok u razdoblju

Q\(_{\text{maks}}\) = maksimalni protok u mjesecu (satna vrijednost)

nQ\(_{\text{maks}}\) = najmanji maksimalni protok u razdoblju

sQ\(_{\text{maks}}\) = srednji maksimalni protok u razdoblju

vQ\(_{\text{maks}}\) = najveći maksimalni protok u razdoblju

Legenda: Q_{min}, Q_{maks} apsolutno minimalni odnosno maksimalni protok u mjesecu (satna vrijednost),
Q_{sred} srednji dnevni protok (srednja vrijednost iz dva mjerenja, 06 i 18 sati).

Slika 15. Minimalni (Q_{min}), srednji (Q_{sred}) i maksimalni (Q_{maks}) protok u OŽUJKU 2005. s primjerom pripadajućih karakterističnih vrijednosti (nQ_{min}, sQ_{min}, vQ_{min}, nQ_{sred}, sQ_{sred}, vQ_{sred}, nQ_{maks}, sQ_{maks}, vQ_{maks}) za razdoblje 1961-2000.

Podzemne vode

Tablica 2. Minimalni (NV), srednji (SV) i maksimalni (VV) vodostaji podzemne vode u OŽUJKU 2005.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NV</td>
<td>NV_{\text{min}}</td>
</tr>
<tr>
<td>SAVA</td>
<td>Zagreb-Borovje</td>
<td>103,16</td>
<td>12.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Zagreb-Mićevec</td>
<td>99,96</td>
<td>10.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Repaš</td>
<td>SV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zagreb-Borovje</td>
<td>103,50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zagreb-Mićevec</td>
<td>100,41</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zagreb-Borovje</td>
<td>103,92</td>
<td>31.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Zagreb-Mićevec</td>
<td>100,93</td>
<td>21.03.’05.</td>
</tr>
</tbody>
</table>

Tablica 3. Minimalni (NV), srednji (SV) i maksimalni (VV) vodostaji podzemne vode u OŽUJKU 2005.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NV</td>
<td>NV_{\text{min}}</td>
</tr>
<tr>
<td>DRAVA</td>
<td>Repaš</td>
<td>115,38</td>
<td>09.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>115,92</td>
<td>10.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>104,95</td>
<td>10.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>97,99</td>
<td>10.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Repaš</td>
<td>SV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>116,10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>105,12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>98,24</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Repaš</td>
<td>VV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>116,30</td>
<td>31.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>105,34</td>
<td>30.03.’05.</td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>98,46</td>
<td>30.03.’05.</td>
</tr>
</tbody>
</table>

\[\text{m.n.m.} - \text{metara nad morem}\]
\[\text{NV, SV, VV} - \text{minimalni, srednji i maksimalni vodostaj podzemne vode u mjesecu}\]
\[\text{NV}_{\text{min}}, \text{SV}_{\text{min}}, \text{VV}_{\text{min}} - \text{minimalni, srednji i najviši minimalni vodostaj podzemne vode za pripadajući mjesec u razdoblju}\]
\[\text{SV}_{\text{min}}, \text{SV}_{\text{sr}}, \text{SV}_{\text{maks}} - \text{minimalni, srednji i najviši srednji vodostaj podzemne vode za pripadajući mjesec u razdoblju}\]
\[\text{VV}_{\text{min}}, \text{VV}_{\text{sr}}, \text{VV}_{\text{maks}} - \text{minimalni, srednji i najviši maksimalni vodostaj podzemne vode za pripadajući mjesec u razdoblju}\]
unatoč oscilacijama, razina podzemne vode je konstantno rasla. Na svim mjernim postajama Dravskog sliva, razina podzemne vode je krajem ožujka imala maksimalne vrijednosti.

EKOLOŠKE PRILIKE

Meteorološke karakteristike

Prizemni granični sloj nad širim područjem Zagreba je u ožujku tijekom noći bio najčešće stabilno stratificiran (u 35% slučajeva Pasquillova kategorija stabilnosti), a tijekom dana neutralno, uz vrlo plitki sloj jako labilnog zraka u 16% i umjerenog labilnog u 3% slučajeva (tablica 6). Tijekom noći su u većini slučajeva postojale prizemne i/ili podignute temperaturne inverzije, dok sredinom dana uopće nije bilo prizemnih inverzija, a podignute ili visinske su zabilježene u 64% slučajeva (tablica 4).

Tijekom noći nije bilo sloja miješanja, premda su u 41% slučajeva postojali slabi uvjeti za miješanje zraka po vertikali u sloju čija je visina varirala od 42 m 28. ožujka do preko 5 km 13., 25. i 27. ožujka. Suprotno tome, sredinom dana sloj miješanja se razvio svaki dan. Njegova najčešća visina bila je 251-1000 m, te u 32% slučajeva 1001-2500 m. Srednja mjesečna vrijednost visine sloja miješanja iznosila je 870 m, što je 170 metara manje od višegodišnjeg prosjeka za ožujak.

Prosječno strujanje u unutrašnjosti Hrvatske je bilo slabije (slika 17), pa je zbog toga i provjetravanje većih gradova bilo relativno slabije (koeficijent provjetravanja manji ili jednak 1 sat⁻¹; slika 17). Uz obalu prevladavalo strujanje s kopna na more, sjeveroistočnog ili jugoistočnog smjera, ovisno o tome je li bilo više dana s jugom ili burom. Zbog jačeg vjetra i njegovog konstantnijeg smjera provjetravanje gradova uz obalu je bilo znatno bolje nego u unutrašnjosti (koeficijent provjetravanja je bio između 0.9 sat⁻¹ u Zadru i 7.2 sat⁻¹ u Šibeniku).

Ukupna mjesečna količina oborine je bila na većini promatranih lokacija u granicama višegodišnjeg prosjeka, a u nekim područjima nešto manja od prosjeka. Osim kiše, bilo je snijega i susnjevica, ali ne u znatnoj količini, niti veći broj dana. Zbog toga pojava krutih i mješovitih oblika oborine nije znatno utjecala na efikasnost ispiranja atmosfere, iako teoretski snijeg ispire atmosferu efikasnije od kiše.

Opisane meteorološke prilike omogućile su u ožujku 2005. godine relativno slabu provjetravanju gradova u unutrašnjosti, a nešto bolje u priobalju. Postojali su uvjeti za lokalni i regionalni prijenos onečišćenja s kopna nad Jadranско more. Uvjeti za ispiranje zraka oborinom i mokro taloženje atmosferskog onečišćenja na tlo bili su u granicama normale ili malo ispod njih. Razmjena zraka po vertikali

Tablica 4. Apsolutni (N) i relativni (%) broj slučajeva sa slojem inverzije temperature prema visinskih mjerenjima u Zagrebu za OŽUJAK 2005.

<table>
<thead>
<tr>
<th>Sloj inverzije</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne postoji</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>primerna</td>
<td>24</td>
<td>77</td>
</tr>
<tr>
<td>podignuta</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>visinska</td>
<td>15</td>
<td>48</td>
</tr>
</tbody>
</table>

Tablica 5. Apsolutni (N) i relativni (%) broj dana sa visinom sloja miješanja prema visinskih mjerenjima u Zagrebu za OŽUJAK 2005.

<table>
<thead>
<tr>
<th>Visina sloja miješanja (m)</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne postoji</td>
<td>18</td>
<td>58</td>
</tr>
<tr>
<td>< 250 m</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>251-1000 m</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>1001-2500 m</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>> 2500 m</td>
<td>6</td>
<td>19</td>
</tr>
</tbody>
</table>

Tablica 6. Apsolutni (N) i relativni (%) broj dana sa pojedinom kategorijom stabilnosti prema Pasquillu u prizemnom sloju zraka u Zagrebu za OŽUJAK 2005.

<table>
<thead>
<tr>
<th>Stabilnost</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - jako labilno</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>B - umjeren labilno</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C - malo labilno</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D - neutralno</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>E - malo stabilno</td>
<td>8</td>
<td>26</td>
</tr>
<tr>
<td>F - umjeren stabilno</td>
<td>11</td>
<td>35</td>
</tr>
<tr>
<td>G - jako stabilno</td>
<td>7</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Postaja</th>
<th>RRu</th>
<th>%</th>
<th>pH</th>
<th>pH min-max</th>
<th>SO$_4^{2-}$-S</th>
<th>NO$_3^{-}$-N</th>
<th>NO$_2$</th>
<th>NO$_2$max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntijarka</td>
<td>100</td>
<td>11</td>
<td>5.35</td>
<td>4.54-6.21</td>
<td>1.14</td>
<td>0.71</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Krapina</td>
<td>100</td>
<td>8</td>
<td>6.21</td>
<td>5.20-7.48</td>
<td>0.6</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bilogora</td>
<td>100</td>
<td>10</td>
<td>5.99</td>
<td>5.56-8.24</td>
<td>0.65</td>
<td>0.69</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ogulin</td>
<td>100</td>
<td>12</td>
<td>5.6</td>
<td>4.55-7.23</td>
<td>0.81</td>
<td>0.6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gospić</td>
<td>96</td>
<td>5</td>
<td>6.28</td>
<td>5.03-6.67</td>
<td>0.75</td>
<td>0.39</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Zavižan</td>
<td>100</td>
<td>10</td>
<td>5.96</td>
<td>4.73-6.46</td>
<td>0.72</td>
<td>0.59</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Pazin</td>
<td>100</td>
<td>8</td>
<td>6.55</td>
<td>5.98-7.10</td>
<td>1.32</td>
<td>0.65</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rijeka</td>
<td>82</td>
<td>4</td>
<td>5.56</td>
<td>5.03-7.45</td>
<td>1.23</td>
<td>0.54</td>
<td>10</td>
<td>32</td>
</tr>
<tr>
<td>Zadar</td>
<td>100</td>
<td>9</td>
<td>6.56</td>
<td>4.33-7.85</td>
<td>1.41</td>
<td>0.77</td>
<td>4</td>
<td>15</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>98</td>
<td>8</td>
<td>6.31</td>
<td>5.13-7.00</td>
<td>2.53</td>
<td>0.52</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sl. Brod</td>
<td>98</td>
<td>9</td>
<td>5.87</td>
<td>5.43-7.74</td>
<td>1.13</td>
<td>0.62</td>
<td>16</td>
<td>31</td>
</tr>
<tr>
<td>Karlovac</td>
<td>100</td>
<td>10</td>
<td>5.65</td>
<td>4.59-6.84</td>
<td>0.59</td>
<td>0.55</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Slika 17. Ukupno mjesečno taloženje sumpora iz sulfata i dušika iz nitrata (kg/ha), prosječna brzina i smjer strujanja, te koeficijent provjetravanja (K.P.) u Hrvatskoj za OŽUJAK 2005. godine
je postojala u sloju prosječne debljine oko 870 m, najčešće do 1000 m, barem na najvećem urbano-industrijskom području u Hrvatskoj, području Zagreba. Zato koncentracije plinova i čestica u prizemnom graničnom sloju atmosfere vjerovatno nisu bile visoke, naročito ako se uzme u obzir da su druga i treća dekada ožujka bile izrazito tople, zbog čega je emisija onečišćenja iz kućnih ložista bila manja.

Onečišćenje zraka i oborine

Tijekom ožujka su masene koncentracije dušik dioksida bile u laganom padu, osim na mjernoj postaji Rijeka-Kozala, gdje su koncentracije bile gotovo dva puta veće nego u veljači, dok na postaji Ogulin nisu zabilježene mjerljive koncentracije. Na ostalim postajama su srednje mjesečne koncentracije iznosile od 1 µg/m³ na Zavičanu (Velebit, 1594 m n/v, EMEP-program) do 16 µg/m³ u Slavonskom Brodu. Najveća 24-satna koncentracija je izmjerena 19./20. ožujka u Rijeci i iznosila je 32 µg/m³, a samo nešto manje koncentracija 8./9. u Slavonskom Brodu, 31 µg/m³. Količina oborine i njezina kiselost je bila manja nego u veljači, i varirala je kao obično od postaje do postaje. Udio kiselih kisela je iznosio od 10% na Bilogori do 55% na visinskoj postaji Puntijarka (Sljeme-Medvednica). Znakovit udio od 42% je zabilježen u Ogulinu. Jedino u Pazinu tijekom ožujka nisu zabilježene kisele kisice. Ukupno mjesečno taloženje sulfata izraženog kao sumpor je iznosilo od 0.25 kg/ha u Krapini do 2.36 kg/ha u Dubrovniku, a taloženje anorganskog nitrata izraženog kao dušik od 0.23 kg/ha u Krapini do 0.74 kg/ha u Pazinu. Podaci mjerenja upućuju na konstantno zakiseljavanje istraživanog područja mokrim oborinskim taloženjem štetnih komponenata, ali je ono u ožujku bilo nešto manje nego u veljači. Kontinuirano veće ili manje opterećenje ekosustava kiselim taloženjem iz oborine, može biti rezultat lokalnog, regionalnog ali i prekograničnog prijenosa onečišćenja, ovisno o meteorološkim čimbenicima.

Kakvoća zraka

Mjerenja na automatskoj mjernoj postaji - Mirogojska 16, Zagreb

Tijekom ožujka 2005. su dominantni onečišćivači bile lebdeće čestice PM 10 i ozon. Dnevni srednjaci koncentracija ovih onečišćivača su se kretili od 18.20 do 79.37; srednja mjesečna koncentracija je bila 41.91, a percentil (98%) za lebdeće čestice 77.84 µg/m³ i kretao se i od min. 35.64 do max. 103.42. Srednja mjesečna koncentracija za ozon je iznosila 67.46 a percentil (98%) 101.24.

Iz prikaza dnevnih indeksa vidljiv je period pojačanog zagađenja lebdećim česticama u razdoblju od 3. do 8. ožujka (slika 19 i 20).

Indeks kakvoće zraka

Iz prikaza dnevnih indeksa kakvoće zraka, za postaju u Mirogojskoj 16, kroz mjesec ožujak, vidljivi...
Tablica 8. Statistička obrada i ocjena zraka u OŽUJAKU 2005. (Koncentracije izražene u µg/m³ osim za CO (mg/m³).

<table>
<thead>
<tr>
<th>Statistički parametar</th>
<th>L. Čestice</th>
<th>CO</th>
<th>NO₂</th>
<th>O₃</th>
<th>Benzen**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
<td>18.2</td>
<td>0.06</td>
<td>13.36</td>
<td>35.64</td>
<td>0.47</td>
</tr>
<tr>
<td>Dana</td>
<td>10.3</td>
<td>13.3</td>
<td>30.3</td>
<td>14.3</td>
<td>27.3</td>
</tr>
<tr>
<td>Max</td>
<td>79.37</td>
<td>0.91</td>
<td>71.78</td>
<td>103.42</td>
<td>1.75</td>
</tr>
<tr>
<td>Dana</td>
<td>6.3</td>
<td>6.3</td>
<td>7.3</td>
<td>17.3</td>
<td>6.3</td>
</tr>
<tr>
<td>Sr.vrij.</td>
<td>41.91</td>
<td>0.47</td>
<td>39.37</td>
<td>67.46</td>
<td>0.92</td>
</tr>
<tr>
<td>Median</td>
<td>39.59</td>
<td>0.42</td>
<td>39.27</td>
<td>64.19</td>
<td>0.83</td>
</tr>
<tr>
<td>Percentil 98</td>
<td>77.84</td>
<td>0.84</td>
<td>70.18</td>
<td>101.24</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Legenda:
- manje od PV98
- manje od GV98
- veće od GV98
- nije regulirano

**Benzen reguliran za 8 satno vrijeme usrednjavanja

Legirano Zakonom o zaštiti zraka i Uredbom o preporučenim i graničnim vrijednostima kakvoće zraka

Skraćenice:
PM 10 Lebdeće čestice aerodinamičkog promjera 10 i manje mikrometara.
98. centil Vrijednost ispod koje se nalazi 98 % izmjerenih vrijednosti
median Vrijednost ispod koje se nalazi 50 % izmjerenih vrijednosti
dnevni srednjak Aritmetička sredina satnih vrijednosti od 0:00 do 24:00
PV 98. Preporučena vrijednost percentila 98.
GV 98. Granična vrijednost percentila 98.
PV Preporučene vrijednosti kakvoće zraka kao vrijednosti ispod kojih se utjecaj na zdravlje ljudi i vegetaciju ne očekuje ni pri trajnoj izloženosti
GV Granične vrijednosti kakvoće zraka kao vrijednosti ispod kojih se ne očekuje štetno djelovanje na zdrave osobe, ali pri dugotrajnoj izloženosti njihovom utjecaju postoji rizik mogućeg utjecaja na osjetljive skupine (npr. mala djeca, kronični bolesnici), biljke, pa i materijalna dobra.
* Definicije PV i GV iz Zakona o zaštiti zraka (NN 48/95)

Slika 19. Dnevni srednjaci koncentracija benzena (µg/m³) i ugljičnog monoksida (mg/m³) za OŽUJAK 2005. godine
vo je da je zrak u 7 dana bio umjerene kvalitete (indeks veći od 50), dok je ostale dane zrak bio dobre kvalitete (slika 21).

Statistička obrada podataka

Statističkom obradom izmjerenih vrijednosti, uobičajenom za kraća razdoblja, zrak je za ovo područje u ožujku ocijenjen na sljedeći način (Tablica 8). Računaju se srednja vrijednost, medijan, maksimum, minimum i 98. percentil.

BIOMETEOROLOŠKE PRILIKE

U biometeorološkom smislu ožujak 2005. godine je u čitavoj Hrvatskoj bio hladan i u granicama normalnih biometeoroloških prilika u ožujku.

Prva je dekada bila najhladnija. Pretežno su se izmjenjivali osjeti hladno i vrlo hladno, a u Splitu je zbog pojačanog vjetra u nekoliko navrata bilo iznimno hladno. U Zagrebu je samo prva tri dana bilo vrlo hladno, a u ostalom dijelu dekade uglavnom hladno, dok je u Splitu osjet vrlo hladnoga bio uglavnom ograničen na jutarnje ili večernje sate. Osjet vrlo hladnoga je bio najčešći u Gospiću. Ova je dekada u većini analiziranih gradova bila hladnija od prosjeka. U Zagrebu i Slavonskom Brodu popodneva i večeri su bili hladiji od normale, a jutra znatno hladnija. U Gospiću su popodneva bila hladnija, večeri znatno hladnije, a jutra izvanredno hladnija od normalnih. U Splitu su popodneva bila u granicama normalnih biometeoroloških prilika, jutra hladnija, a večeri znatno hladnije od normalnih.

Početkom druge dekade je još bilo hladno, povremeno i vrlo hladno, da bi u drugom dijelu dekade zatopilo, pa se u kontinentalnim dijelovima Hrvatske...
Slika 22. Osjet ugodnosti prema indeksu TWH za Zagreb, Slavonski Brod, Split-Marjan i Gospić za OŽUJAK 2005. godine
osjet hladnoga zadržao još u jutarnjim i večernjim satima, dok je u najtoplijem dijelu dana bilo svježe ili povremeno ugodno. U Splitu je u drugoj dekadi osjet hladnoga zabilježen samo povremeno u jutarnjim satima, a u ostalim je dijelovima dana prevladavalo svježe, a u popodnevnim satima povremeno i ugodno. Ova je dekada većim dijelom bila toplija od normale - takva su bila popodneva i večeri u Zagrebu i Slavonskom Brodu, popodneva u Gospiću, te svi termini motrenja u Splitu. Hladnija od normalnih bila su samo jutra u Gospiću.

U posljednjoj dekadi je još malo zatopilo. Najčešći je osjet bio svježe, a popodneva su u Zagrebu, Slavonskom Brodu i Splitu nerijetko bila ugodna. Osjet hladnoga pojavljivao se još uglavnom samo u jutarnjim satima, Sredinom dekade je u Splitu zbog jakoga vjetra, i tijekom dana bilo hladno. Ova je dekada bila uglavnom toplja od normale. Samo su večeri u Splitu bile u granicama normalnih biometeoroloških prilika, dok su u Zagrebu večeri bile izvanredno toplje od normalnih.

AGROMETEOROLOŠKE PRILIKE

Početak mjeseca

Tijekom prvih šest dana mjeseca bili smo svjeđoci ekstremno niskih temperatura zraka. Primjerice, na 5 cm od tla minimalna se temperatura zraka spustila u Osijeku i Karlovcu na -22°C, u Daruvaru na -23°C, a u Križevcima i na -24°C. No, u Gospiću, spomenuta se temperatura zraka spustila i na vrlo niskih -28°C. Vrijedno je istaknuti kako je vrlo hladno bilo i u Dalmaciji. Pomalo nevjerojatno, ali istinito, u Božavi na Dugome otoku tlo se na 2 cm dubine svakodnevno smrzavalo. Upravo zato, već sve izniknule povrtlarske kulture potpuno su stradale pa je njihovu sjetvu nastupom toplijeg vremena trebalo ponoviti.

Tlo se u istočnim i zapadnim dijelovima zemlje tijekom spomenutih 6 dana smrzavalo do 10, a tek samo ponedjje i do 20 cm dubine. Na 5 cm dubine

Slika 23. Ocjena srednje mjesečne temperature tla (°C) na 5 cm dubine pomoću percentila za OŽUJAK 2005. godine
temperature tla su se spustile, primjerice u Varaždinu i Slavonskome Brodu na -2, a u Krapini, pa i u Poreču čak i na -3°C.

Početak druge dekade

Hladno je bilo i početkom druge dekade mjeseča. Minimalne su se temperature zraka na 5 cm od tla spustile u Poreču na -9°C, u Pazinu na -12°C, u Krapini na -14°C, u Daruvaru na -15°C, u Križevcima na -19°C, a u Osijeku čak i na -20°C. Dakle, po spomenutim temperaturama kao da je zima tek počela.

I tlo je još uvijek bilo zamrznuto. U istočnim i zapadnim dijelovima zemlje tlo se smrzavalo sve do 10 cm dubine. No, na 20 cm dubine, temperature tla kretale su se uglavnom oko 1°C. Da temperature tla nisu bile i niže treba zahvaliti snijegu, a čija je visina na tlu bila u istočnim dijelovima zemlje oko 10, a u zapadnim dijelovima zemlje i do 20 cm.

Dakle, ozime ratarske kulture nisu stradale od niskih temperatura zraka. Kako je tih dana bilo i sunc¬ca, vinogradari i voćari nastavili su s rezidbom.

Treća dekada mjeseca

Tlo se u najistočnijim dijelovima zemlje dovoljno osušilo, pa je sjetva zobi, ječma, a i zatvaranje zimske brazde moglo početi. No, u Posavini, a i u zapadnim dijelovima zemlje tlo je bilo pretjerano vlažno. Zatvaranje zimske brazde, a i sjetva nisu se mogli obavljati.

Temperature tla polako su iz dana u dan rasle. Primjerice, srednja dnevna temperatura tla na 5 cm dubine 23. ožujka je na agrometeorološkoj postaji u...
Slika 26. Bilanca vode po mjesecima
Križevcima narasla do 8°C, a 24. ožujka već i do 11°C. Dakle, temperature sjetvenog sloja tla u istočnim i zapadnim dijelovima zemlje prelazile su temperaturni prag kod kojeg sjeme nekih površinskih a i ratarских kultura počinje klijati.

Vrijednosti maksimalnih temperatura zraka, a koje su narasle u Osijeku do 18°C, u Varaždinu do 19°C, a u Sisku, Slavonskome Brodu pa i u Krapini do 21°C, primorale su voćare i vinogradare da s rezidbom požure. Naime, vinova loza počela je polako suziti, a to je bio znak da je kolanje sokova u biljama i s dublje korijenovim sustavom već postalo vrlo intenzivno.

Temperature tla

Prema raspadnji percentila (slika 23) tlo je na 5 cm dubine u istočnim i zapadnim dijelovima zemlje, u Gorskom kotaru, dijelom u Lici, a i u južnoj Dalmaciji bilo "normalno toplo". Hladno je bilo uz obalu Istre, te u većem dijelu Like.

Na 5 i 20 cm dubine, temperature tla počele su rasti 15. ožujka (slika 24 i 25). Tlo je bilo najtoplje 27. ožujka.

Bilanca vode

Bilanca vode je pregled raspoložive vode temeljen na načelu da tijekom određenog vremenskog intervala ukupan višak vode mora biti jednak zbroju ukupnih gubitaka vode i netto promjene zaliha vode u nekom volumnom objektu. Prema Bonacciju, bilancu vode treba shvatiti kao količinski opis hidrološkog ciklusa odabranih lokaliteta. Različite namjene bilance vode uvjetuju koristištenje različitih varijabli kao i drugačije metode njihovog određivanja, što podrazumijeva i drugačije oblike jednadžbe bilance. Upravo zato, u ovoj analizi vodna bilanca predstavlja razliku između količina efektivne oborine i evapotranspiracije, a gdje je evapotranspiracija izračunata po Penmanovoj jednadžbi.

Na temelju bilance vode po mjesecima (slika 26) zaključujemo kako je tijekom siječnja i ožujka u Zagrebu i Varaždinu bilanca vode bila negativna, odnosno efektivne su oborine bile manje od vrijednosti evapotranspiracije. Negativne vrijednosti bilance vode tijekom ožujka bile su i u Osijeku, te u Slavonskom Brodu. U odnosu na višegodišnje vrijednosti evapotranspiracije, tijekom ožujka ove godine one su na svim analiziranim postajama bile manje.

Tablica 9. Stupanj alergogenosti peluda

<table>
<thead>
<tr>
<th>Alergogenost</th>
<th>Vrsta peluda</th>
</tr>
</thead>
<tbody>
<tr>
<td>VRLO JAKA</td>
<td>Breza Čempresi</td>
</tr>
<tr>
<td>JAKA</td>
<td>Lijeska Joha</td>
</tr>
<tr>
<td>UMJERENA</td>
<td>Jasen Javor Hrast</td>
</tr>
<tr>
<td>SLABA</td>
<td>Vrba Topola</td>
</tr>
</tbody>
</table>
Promjenljivo razdoblje, s oborinama tijekom posljednje pentade mjeseca, povremeno je utjecalo na ispiranje peluda iz zraka u danima s kišom (slika 27). Od ukupnog broja peluda u zraku, najzastupljeniji je bio pelud topole (Populus sp.) i čempresa (fam. Cupressaceae). Značajno je manje bilo peluda lijeske (Corylus sp.), johe (Alnus sp.), jasena (Fraxinus sp.) i vrbe (Salix sp.). Pelud javora (Acer sp.), hrasta (Quercus sp.) i breze (Betula sp.) zabilježen je tek sporadično, s pokojim zrncem (slika 28).

Alergološki, ožujak 2005. je bio nepovoljan za osobe koje su alergične na pelud johe, lijeske i čempresa. No, na sreću, pelud ovih biljaka unatoč vrlo visokoj alergogenosti je brzo nestao iz

Slika 27. Ukupne dnevne količine peluda u m³ zraka grada Zagreba (mjereno na postaji Zagreb-Jug), mjesečni hod srednje dnevne, maksimalne i minimalne temperature zraka i oborine na opservatoriju Zagreb Maksimir u OŽUJKU 2005.

zraka, pa su i tegobe bile kratkotrajne. Što se tiče peluda topole, iako je bio prisutan u visokim koncentracijama zadnji tjedan u mjesecu, nije stvarao veće poteškoće, jer je slabo alergogen. Vrlo jako alergogen pelud breze također nije predstavljao opasnost u ovom mjesecu, jer se pojavljivao pojedinačno i nije dosegnuo koncentraciju kod koje se razvijaju simptomi alergije. Stupanj alergogenosti peluda prisutnog u zraku grada Zagreba u ožujku, prikazan je u tablici 9.

Teme prethodnih Svjetskih dana voda bile su:

1994: Briga za naše vodne resurse je obvezna svakoga;
1995: Žene i voda;
1996: Voda za žedne gradove;
1997: Voda na Zemlji: Ima li je dovoljno?
1998: Podzemne vode: nevidljivi resurs;
1999: Svi živimo nizvodno;
2000: Voda za 21. stoljeće;
2001: Voda i zdravlje;
2002: Voda i razvoj.
2003: Voda za budućnost;
2004: Voda i katastrofe;
2005: Voda za život;
2006: Voda i kultura.

Raspoložive količine slatke vode

Od ukupne količine vode na Zemlji čak 97.5% od njih je slana voda koja se nalazi u oceanima i morima. Na slatku vodu otpada samo 2.5%. Od raspoloživih količina slatke vode 30.6% se nalazi u tekućem stanju, dok se 69.4% nalazi u ledenjacima i stalnom snježnom pokrivaču. Od slatke vode u tekućem stanju najviše otpada na: podzemne vode 98.7%, jezera 0.96%, tlo 0.16%, atmosferu 0.12%, rijeke 0.02% itd.

Prema procjenama 1.1 milijarda stanovništva nemaju pristup dobroj vodi, a 2.4 milijarde živi bez osnovnih sanitarnih uvjeta. Porazno je da godišnje prosječno umre 8 milijuna ljudi, među njima najviše djece, zbog nedostatka opskrbe pitkom vodom ili katastrofa koje one izazivaju.

Posebno je zabrinjavajuća okolnost što je evidentan stalni trend smanjivanja zaliha vode po stanovniku na svim kontinentima (a naročito u Aziji, Africi i J. Americi). Ovakav trend posljedica je:

- dramatičnog porasta broja stanovnika;
- varijabilnosti i promjena klime;
- razvoja velikih gradova
- sve većeg zagađivanja, naročito površinskih voda.

Promjena broja svjetskog stanovništva u zadnja tri milenija:

- 2000. g. prije Krista 10 000 000
- U vrijeme Kristova rođenja 230 000 000
- 1000. godina nakon Krista 280 000 000
- 1500. (otkriće Amerike) 430 000 000
- 1800. 767 000 000
- 1850. 1 073 000 000
- 1900. 1 567 000 000
- 1950. 3 037 000 000
- 1970. 3 969 000 000
- 1980. 4 342 000 000
- 1990. 5 285 000 000
- 2000. 6 064 000 000
- 2002. 6 153 000 000
- 2025. 8 300 000 000
- 2050. 10 000 000 000

Stalni trend porasta koncentracije stanovništva u velikim gradovima je sve izrazitiji. Naprimjer, 2000. godine više od 47% stanovnika živjelo je u gradovima, a od toga je bilo 22 grada - megapolis s više
od deset milijuna stanovnika. Veliki gradovi trebaju velike količine pitke vode na relativno malom prostoru. S druge strane pretvaraju te vode u zagadenu otpadnu vodu, koju je nužno ispuštati u okoliš, i na taj način ugrožavaju još preostale zalihe čiste vode.

Obnovljive zalihe slatke vode na Zemlji iznose oko 45 000 km³/god. što je dovoljno za oko devet milijardi stanovnika.

Postojeća "raspodjela" vode - potencijalni sukobi

Postojeća raspodjela vode je nepravilna jer proširči bogati zapadnjak troši dnevno i trideset puta više vode od stanovnika u siromašnim zemljama. U 21. stoljeću treba računati sa sukobiima zbog voda. Prema procjeni UN postoji čak 300 potencijalnih žarišta sukoba vezanih za slatku vodu, od kojih su najvjerojatniji sukobi između:
- Izraela i Libanona;
- Turske, Sirije i Iraka,
- Indije i Pakistana;
- Kazahstana, Uzbekistana, Kirgizije i Tadžikistana;
- SAD i Meksika;
- Bocvane, Mozambika, Zimbabwea i Zambije i dr.

Rijeke koje nestaju

Neke od svjetskih rijeka presušuju prije svojih ušća u more. Naprimjer, Amu Darja koja se ulijeva u veliko Aralsko jezero svakim danom gubi sve više svoje vode radi navodnjavanja plantaža pamuka. Rezultat toga je drastično snižavanje razine Aralskog jezera. Žuta rijeka u Kini nije se uopće ulijevala u more u nekim danima 1972. godine. Situacija se od tada još više pogoršala, tako da se 1977. rijeka punih sedam mjeseci nije ulijevala u more. Slično se dogada s rijekama: Colorado (SAD), Ganges (Indija), Nil (Egipat) i mnoge druge.

Sliv - osnovna jedinica

Problem s vodom su posebno izraženi između uzvodnih i nizvodnih dijelova toka i sliva medunarodnih rijeka. Posebni se problemi javljaju kod situacija u kojima su uzvodni dijelovi dio apsolutnog monopolia i potpune kontrole tržišta.

Alternativa

- Štednja i racionalna potrošnja vode;
- Desalinizacija (dostupna samo bogatima);
Ponovna upotreba otpadnih voda;
- Dvostruke vodoopskrbne mreže (čista i mana je čista voda).

Uloga Svjetske meteorološke organizacije (SMO)

Svjetska meteorološka organizacija, kao najviši autoritet na području meteorologije i hidrologije igra značajnu ulogu i u rješavanju problema vezanih za vode i vodne resurse. Naprimjer, vrlo zapaženu ulogu u radu UN - Svjetske konferencije o smanjivanju katastrofa (Kobe, Japan, 18.-22. siječanj 2005. godine) imao je generalni tajnik SMO-a, Michael Jarraud, koji je u Izjavi na plenarnoj sjednici naglasio, da je u razdoblju: 1992.-2001. oko 90 % svih prirodnih katastrofa bilo uzrokovano meteorološkim ili hidrološkim čimbenicima. U zaključnim napomenama M. Jarrand je naveo glavne zadatke Svjetske meteorološke organizacije u narednom razdoblju, na području smanjivanja šteta od katastrofa:

a) unaprijediti značaj razvoja kulture prevencije, i utvrđivanja strategije prije katastrofe (naročito, rano uzbužnjivanje i procjena rizika), kao dio plana spremnosti na katastrofe,
b) razraditi socio-ekonomske studije za analize koštanje-dobit u prevenciji i smanjivanju prirodnih katastrofa, naročito u sistemu ranog uzbužnjivanja,
c) u narednih 15 godina smanjiti za cca 50 % broj poginulih u prirodnim katastrofama uzrokovanim meteorološkim, hidrološkim i klimatskim čimbenicima,
d) osigurati prepoznavanje uloge i doprinosa Svjetske meteorološke organizacije i Nacionalnih meteoroloških i hidroloških službi (NMHS),
e) prepoznati i aktivno učestovati u Programu prevencije i smanjivanja šteta od prirodnih katastrofa,
f) osigurati uključivanje SMO i NMHS u projekte vezane za katastrofe, na internacionalnom, regionalnom i lokalnom nivou,
g) osigurati učešće meteorološke i hidrološke zajednice u programe treninga i edukacije putem medunaodne suradnje i parterstva.

Uloga Državnog hidrometeorološkog zavoda RH

Očigledno je da voda, kao ključna sirovina, koja je prostorno i vremenski vrlo nejednoliko raspoređena, sve više postaje čimbenik ograničavanja gospodarskog i društvenog razvitka, pa prema tome i čimbenik politike. Potrebe za slatkom vodom se stalno povećavaju, i zato vode treba kontinuirano procjenjivati i pažljivim gospodarenjem sačuvati. Samo zajedničke akcije mogu osigurati održivi razvoj. Državni hidrometeorološki zavod RH, aktivno sudjeluje, a sudjelovat će i u budućnosti, u svim akcijama vezanim za vode kao što su: procjena vodnih resursa, prognoze i upozorenja, uključujući prognoze poplava i suša, te zaštitu vodnih resursa.

dr.sc. Duško Trninić
OBILJEŽAVANJE SVJETSKOG METEOROLOŠKOG DANA 2005.

Uobičajeno je da se Svjetski meteorološki dan obilježava svake godine pod određenim sloganom, a ove godine to je Vrijeme, klima, voda i održivi razvoj. Tom prigodom glavni tajnik WMO gospodin Michel Jarraud upućio je poruku koja je priložena u Biltenu.

Cilj ovogodišnje teme je prepoznavanje uloge i velikog doprinosa meteorologije, hidrologije i njima srodnih geofizičkih znanosti napretku čovječanstva, zaštititi okoliša i smanjenju siromaštva. Znakovita prijetnja održivom razvoju je povećan učinak ekstremnih vremenskih pojava. Procijenjeno je da su oko 90% svih prirodnih katastrofa meteorološkog i hidrološkog podrijetla, a 65% svjetskog gospodarskog gubitka odnosi se na prirodne katastrofe. Nas najčešće pogadaju prirodne nepogode kao što su olujni vjetar (bura i jugo), tuča, suše, poplave, šumski požari, poledica, mraz, velike količine oborine i snijega, erozija tla i pijavice. S obzirom da ne možemo kontrolirati vrijeme ulažu se veliki napor u precizna motrenja, što točnija prognoziranja i pravovremena upozorenja na nepogode kako bi se zaštitili ljudski životi i ublažile njihove posljedice, ali i sačuvale prirodne ljepote.

Ove godine taj dan prigodno obilježen u Starogradskoj vijećnici u Zagrebu, a zajedno su ga proslavili djelatnici Državnog hidrometeorološkog zavoda (DHMZ), Geofizičkog odsjeka Prirodoslovno-matematičkog fakulteta (PMF) i članovi Hrvatskog meteorološkog društva (HMD). Sjednici su prisustvovali predstavnici ministarstava, instituta i fakulteta, a nadahnuto ju je vodio v.d. ravnatelj DHMZ-a mr. sc. Ivan Čačić uz potporu predsjednice Geofizičkog odsjeka PMF-a prof. dr. sc. Davorka Herak i predsjednice Hrvatskog meteorološkog društva dr. sc. Mangane Gajić-Ćapka (slike 1 i 2).

Svjetski meteorološki dan obilježen je s tri predavanja koja su se odnosila na ovogodišnju temu, o najnovijim istraživanjima tsunamiima i o Međunarodnoj godini fizeki.
Predavanja na temu slogana ovogodišnjeg meteorološkog dana održala je dr. sc. Branka Ivančan-Picek, pomoćnica ravnatelja DHMZ-a. Ukazala je na današnje mogućnosti praćenja i prognoze vremena, klime i stanja voda (slika 3). Ocjena meteoroloških i hidroloških uvjeta je važan parametar kod izgradnje infrastrukturnih objekata (prometnica, dalekovoda, industrije itd.) zbog njihove sigurnosti i učinkovitosti te zbog očuvanja okoliša. Dakle, društvo se treba razvijati ali pod uvjetom da što manje utječe na okoliš odnosno da se razvija na prihvatljiv i održiv način.

Na kraju je dr. sc. Branko Gelo iz DHMZ-a, kao odgovorni urednik, predstavio novi priručnik Meteorološki pojmovnik i višjezični rječnik, koji su izdali DHMZ i HINUS iz Zagreba.

Slika 6. Prigodna omotnica Hrvatskog meteorološkog društva

Slika 7 Naslovnica knjige
Meteorološki pojmovnik i višjezični rječnik

Pojmovnik je proizvod timskog rada poznatih hrvatskih meteorologa i stručnjaka srodnih disciplina te jezikoslovcu, a sadrži preko 6000 natuknica na četiri jezika (hrvatskom, engleskom, francuskom i njemačkom) s obrazloženjem pojmova na hrvatskom jeziku. Knjiga je koristan priručnik svima onima koji se bave meteorologijom ili njezinom primjenom.

mr.sc. Ivan Ćačić
dr.sc. Krešo Pandžić
mr.sc. Višnjica Vučetić

Uspostava SMO-a nagovjestila je dolazak nove ere, u kojoj je došlo do brzog napretka tih znanosti, s njima povezanih tehnologija i međunarodne suradnje. Ovaj razvoj je brzo doveo do uspostave globalnih operativnih sustava za zaštitu života i imovine, ublažavanje posljedica prirodnih katastrofa i primjenu društvenih i ekonomskih aktivnosti na širokoj ljestvici kao podrška održivom razvoju koji je definiran kao “zadovoljenje potreba sadašnje generacije bez smanjenja mogućnosti budućim narednjima za zadovoljenjem svojih potreba”.

Danas je ritam promjena brži nego ikada prije. Zahvaljujući velikim postignućima, posebno u nekoliko zadnjih desetljeća, puno se očekuje od meteorologa i hidrologa zaštitu svijeta. Gotovo na svaku ljudsku djelatnost utječe vrijeme, klima i voda, a sve je veći broj djelatnosti koje imaju smanjenu sposobnost prilagođavanja rizicima.

Takvo stanje traži nove i sofisticirane oblike organizacije meteoroloških i hidroloških službi gotovo u svakom sektoru gospodarstva, kao što su npr. zdravstvo, promet, urbani razvoj, proizvodnja hrane, gospodarenje vodom, energijom i drugim bogatstvima, turizam i odmor. Od SMO-a i Nacionalnih meteoroloških i hidroloških službi (NMHS) će se zahtijevati bolje usluge u cilju predviđanja, otklanjanja i smanjenja učinaka ekstremnih događaja, širenja pustinja, i drugih prijetnji sigurnosti ljudi i svjetskom okolišu, uključujući promjenu klima, narušavanje ozonskog sloja i povećanje onečišćenja.

Ujedinjeni narodi su od 2000. godine posvetili veću pažnju naporima promocije društvenog i ekonomskog razvoja koji treba biti takav da ne šteti okolišu, poživajući sve članice UN-a da dosegnu milenijske razvojne ciljeve. Neki od njih, koji trebaju biti postignuti do 2015. godine su od posebnog interesa za SMO:

- Prepoloviti broj ljudi koji zaraduju manje od jednog dolara dnevno ili trpe glad;
- Prepoloviti broj ljudi koji nisu u mogućnosti imati, ili si priuštiti čistu i pitku vodu;
- Obratiti pažnju na osjetljivost, procjenu rizika i ponašanje u slučaju katastrofa što uključuje prevenciju, ublažavanje, pripravnost, reakciju i oporavak, kao bitne elemente za sigurniji svijet;
- Obratiti pažnju na teme vezane za promjenu klima, što uključuje monitoring, projekciju i primjenu odgovarajućih strategija na nacionalnim, regionalnim i međunarodnim razinama;
- Osigurati održivost okoliša;
- Razviti svjetsko partnerstvo za razvoj.

Ovi ciljevi su prošireni Planom o primjeni iz Johannesburga gdje je...
održana Svjetska Konferencija o održivom razvoju 2002. godine. Hitnost ovih zadataka danas je neusporediva. SMO, kao najveći autoritet UN - ovih sustava (za vrijeme, klimu i vodu) ima odgovornost za koordinaciju i primjenu srodnih programa koji doprinose globalnim ciljevima (MRC-a, održivom razvoju malih otočnih država u razvoju, osiguranju hrane, proizvodnji i potrošnji energije, o okolišu i naseljima, zdravlju, te zaštiti atmosfere.

Doprinosi SMO-a ovim inicijativama imaju različite oblike. Primarni cilj je poboljšati motrenja i predviđanje stanja Zemljine atmosfere i vode, njihovih međusobnih međudjelovanja, te međudjelovanja sa drugim sustavima na Zemlji, te rana upozorenja.

Napredak u daljinskim motrenjima kao što su radarska, satelitska i ona drugih motriteljskih uređaja, kao i u obradi podataka i komunikacijama, dovođe do znakovitog poboljšanja znanstvenog razumijevanja dinamičkih i fizikalnih procesa u atmosferi i oceanima i njihovim međudjelovanjima sa ostalim komponentama raznih sustava na Zemlji. Kao rezultat, postignuto je izvanredno poboljšanje u kvaliteti i preciznosti prognoza vremena i upozorenja. Danas je moguće napraviti determinističku prognozu vremena za sedam do deset dana u izvantropskim područjima, a za tri do četiri dana u tropskim područjima. Nadalje, izvanredan razvoj prognoze postignut je u sezonskim predviđanjima fenomena kao što su El Nino i La Nina. Zbog većeg znanja i mreže uređaja koji su danas dostupni, moguće je izraditi korisnu prognozu takvih pojava nekoliko mjeseci do godine dana unaprijed.

SMO je bio glavna pokretačka snaga koja je stajala iza postignuća u znanju i svijesti o fizičkom okolišu. SMO crpi svoju snagu iz činjenice da vrijeme i klima ne prepoznaju političke ili ekonomske granice, te iz snažne privrženosti svojim članima. Programe SMO-a formuliraju njene članice, koje ih posjeduju i rade na njima da bi postigli ciljeve svog održivog razvoja. Ovo jedinstveno uređenje donijelo je SMO-u reputaciju modela međunarodne suradnje, kao i vodeću ulogu pri prevenciji i ublažavanju katastrofa, te priznanje da najviše pridonosi održivom društveno ekonomskom razvoju.

Takav je razvoj znatno poboljšao dobrobit ljudske vrste. Ipak, pojavili su se novi izazovi kao što su povećana koncentracija stakleničkih plinova u atmosferi, promjena klima, smanjenje stratosferskog ozonskog sloja, nestajanje izvora pitke vode, te rasprostranjenje atmosferskih i okeanijskih procesa i promjena u drugim sustavima na Zemlji.

Istovremeno, znakovita prijetnja održivom razvoju je povećana. To je uključovalo promjene klima, globalnih promjena u planinarstvu, promjene u industrijskim proizvodnji, udar cvetom, rasprostranjenje šćavnica, te prijetnja globalnog otopljenja.

SMO je bio glavna pokretačka snaga koja je stajala iza postignuća u znanju i svijesti o fizičkom okolišu. SMO crpi svoju snagu iz činjenice da vrijeme i klima ne prepoznaju političke ili ekonomske granice, te iz snažne privrženosti svojim članima. Programe SMO-a formuliraju njene članice, koje ih posjeduju i rade na njima da bi postigli ciljeve svog održivog razvoja. Ovo jedinstveno uređenje donijelo je SMO-u reputaciju modela međunarodne suradnje, kao i vodeću ulogu pri prevenciji i ublažavanju katastrofa, te priznanje da najviše pridonosi održivom društveno ekonomskom razvoju.

Takav je razvoj znatno poboljšao dobrobit ljudske vrste. Ipak, pojavili su se novi izazovi kao što su povećana koncentracija stakleničkih plinova u atmosferi, promjena klima, smanjenje stratosferskog ozonskog sloja, nestajanje izvora pitke vode, te rasprostranjenje atmosferskih i okeanijskih procesa i promjene u drugim sustavima na Zemlji.

Istovremeno, znakovita prijetnja održivom razvoju je povećana. To je uključovalo promjene klima, globalnih promjena u planinarstvu, promjene u industrijskim proizvodnji, udar cvetom, rasprostranjenje šćavnica, te prijetnja globalnog otopljenja.

SMO je bio glavna pokretačka snaga koja je stajala iza postignuća u znanju i svijesti o fizičkom okolišu. SMO crpi svoju snagu iz činjenice da vrijeme i klima ne prepoznaju političke ili ekonomske granice, te iz snažne privrženosti svojim članima. Programe SMO-a formuliraju njene članice, koje ih posjeduju i rade na njima da bi postigli ciljeve svog održivog razvoja. Ovo jedinstveno uređenje donijelo je SMO-u reputaciju modela međunarodne suradnje, kao i vodeću ulogu pri prevenciji i ublažavanju katastrofa, te priznanje da najviše pridonosi održivom društveno ekonomskom razvoju.

Takav je razvoj znatno poboljšao dobrobit ljudske vrste. Ipak, pojavili su se novi izazovi kao što su povećana koncentracija stakleničkih plinova u atmosferi, promjena klima, smanjenje stratosferskog ozonskog sloja, nestajanje izvora pitke vode, te rasprostranjenje atmosferskih i okeanijskih procesa i promjene u drugim sustavima na Zemlji.

Istovremeno, znakovita prijetnja održivom razvoju je povećana. To je uključovalo promjene klima, globalnih promjena u planinarstvu, promjene u industrijskim proizvodnji, udar cvetom, rasprostranjenje šćavnica, te prijetnja globalnog otopljenja.
razvoj. Primjena agrometeoroloških metoda za bolje korištenje zemlje, odabir usjeva, kontrolu skakavaca i praksu upravljanja, doprinosi sigurnosti proizvodnje hrane.

Pokažane aktivnosti na polju gospodarenja vođama, u cilju podrške održivom razvoju, ostaju na prvom mjestu. Podrška nacionalnim hidrološkim službama svijeta pri naporima dobivanja kvalitetne i dostupne vode i omogućavanja međunarodne suradnje, posebno unutar riječnih bazena koji se nalaze na teritorijama više država, je ključna. Partnerstvo među organizacijama UN sustava, te sa nevladinim udružama, će se pogađavati.

S obzirom da nitko ne može kontrolirati vrijeme, precizna motrenja, pravovremena predviđanja sa višom razinom točnosti mogu znatno poboljšati izgleda čovjeka da živi u relativnoj sigurnosti, živi ugodnije i efikasnije zaštićuje dragocjene prirodne resurse. Za osjetljive zemlje, lokalna izgradnja kapaciteta i globalno partnerstvo su neophodni u postizanju ciljeva. SMO i NMHS su jedinstveno opređeni u cilju doprinosa nacionalnim i globalnim naporima. U kontekstu svojih ovlaštenja, SMO će i dalje jačati svoje znanstvene i tehničke programe, ojačavati svoje strateške saveze i partnerstva, te obnoviti napore za izgradnju kapaciteta i mobilizaciju resursa.

Poboljšanje mogućnosti prognoze vremena, s naglasom na vremenska stanja s opasnim učincima, je prioritet. To bi trebalo omogućiti izdavanje točnijih, vremenski preciznijih, te takvih upozorenja na pojavu nevremena na koja se može osloniti, da bi se osigurala bolja pripremljenost i opreznost u cilju smanjenja ranjivosti. Veći naglasak će biti na prijenosu rezultata istraživanja prema operativnim primjenama koja će doprinijeti zaštiti života i imovine, ublažavanju posljedic prirodnih katastrofa, promociji održivog društvenog i ekonomskog razvoja, te zaštiti okoliša.

Na dugoročnom planu, održivi razvoj također zahtijeva bolje razumijevanje klimatskog sustava, s mogućnošću projekcije promjene klime u budućnosti, te njenih mogućih učinaka na varijabilnost klime, društvene ekonomske aktivnosti i okoliš. Planiranje bavljenja sa prijetnjom promjene klime zahtijeva detaljnije scenarije na regionalnoj razini, uključujući varijabilnost u režimu pojave oluja i oborine, utjecaj povišenja razine mora i prijetnje urbanim područjima. SMO će pojačati napore za poboljšanje monitoringa i razvoj boljih klimatskih modela, u cilju smanjenja nesigurnosti projekcija klime, da bi pomogla uspješnoj prilagodbi i omogućila primjenu dobrih političkih i ekonomskih politika na nacionalnoj i međunarodnoj razini.

SMO će nastaviti svoje napore za povećanje količine, kvalitete i dostupnosti produkata NMHS prema korisnicima. To će joj dati jedinstvenu snagu i podištiti svijest o njenom ulozi i statusu kao ključnoj organizaciji u međunarodnoj suradnji i njenom doprinosu održivom razvoju. To će zauzvrat pomoći organizaciji i NMHS-ama da uvrštaju svojo poziciju kao autoriteta u meteorologiji, hidrologiji i njima srodnim geofizičkim znanostima.

Jačanje mogućnosti NMHS-i da efikasno doprinisu održivom razvoju ima za posljedicu poboljšanje postojećih vremenskih, klimatskih motrenja i primjena, istih vezanih za vodu, te razvoj novih. U tom smislu SMO je ustanovio tri nova programa: Prevencija prirodnih katastrofa i ublažavanja posljedica, Svemirske programa i Program za najnerazvijene zemlje.

Veći naglasak se stavlja na podršku zemljama u razvoju, sa žarištem na izgradnju kapaciteta najnerazvijenih zemalja. To se postiže podrškom nacionalnim naporima kojima je cilj moderniziranje NMHS-a, razvoju ljudskih resursa i pripremom pogodnih produkata, te pristupavanjem novih partnerstva i strateških saveza između NMHS-a, između njih i drugih partnera na nacionalnoj, subregionalnoj, regionalnoj i međunarodnoj razini. Članice se također podupiru pri naporu razvijanja novih načina mobiliziranja resursa - financijskih, ljudskih, materijalnih i drugih. Sukladno ovaj dan, moja je želja da 2005. godina označi povećano prepoznavanje i upotrebu produkata NMHS-a na širem području aktivnosti održivog razvoja. Veselimo se daljim jačanju suradnje SMO-a sa odgovornim osobama, ustanovama i ostalim nacionalnim autoritetima, znanstvenom zajednicom, partnerskim organizacijama, nevladinim organizacijama, privatnim sektorom, medijima i javnošću, da bi osigurali bolju komunikaciju i efikasno radnju na područjima vremena, klime i vode, u cilju održavanja dostojnog života ljudi u 21. stoljeću.

Prijevod: Davor Nikolić dipl.inž.
Vrijeme i mjesto održavanja

Sjednica je održana u grandioznom hotelu Pribaltiskaja koji je smješten uz samu obalu Baltijskog mora po čemu nosi ime, u predgradu “hladnog” Petrograda, povijesnog i kulturnog središta Rusije (slika 1).

Pod utjecajem “blagog” Baltika i “oštrog” Sibira, zima je u Potrogradu hladna s preko šest mjeseci pod snježnim pokrivačem (od studenog do svibnja) tako da se Baltijsko more zaledi kao i djelomično vodom bogata rijeka Neva koja izvire u poznatom Ladoga jezeru. Tijekom održavanja sjednice CBS-a vrijeme je bilo promjenljivo s čestim ali kratkotrajnim snijegom te temperaturom zraka od -17°C do -7°C.

Domaćin je organizirao jednodnevno razgledavanje grada s turističkim vodičem. Tijekom tog razgledavanja sudionici skupa upoznati su s brojnim značenostima Petrograda (crkvama, muzejima, galerijama i kraljevskim palačama). Izgleda ipak da najistačnijie mjesto u povijesti Rusije zauzima car Petar Veliki (1672-1725) koji je izradio Petrograd po uzoru na Veneciju, osnovao rusku pomorsku flotu, ukratko europeizirao tada moćnu Rusiju.

Slika 1. Crkva s grobovima ruskih vladara iz razdoblja prije 1917. godine, a ujedno i s najvišim tornjem od svih crkava u Petrogradu.

Slika 2. Detalj s predavanja direktora ruskog Državnog hidrološkog instituta u Petrogradu ispred stelitske snimke Finskog zaljeva.
Protokolarni aspekt

Na sjednici je bilo nazočno preko 160 delegata, najviše predstavnika državnih meteoroloških i hidroloških službi (National Meteorological and Hydrological Services - NMHS), te predstavnika medunarodnih organizacija i institucija, na primjer Europskog centra za srednjoročne prognoze vremena (European Centre for Medium-Range Weather Forecasts - ECMWF), Europske organizacije za iskorištavanje meteoroloških satelita (European Organization for the Exploitation of Meteorological Satellites - EUMETSAT), Medunarodne organizacije za civilno zrakoplovstvo (International Civil Aviation Organization - ICAO) i drugih organizacija. Hrvatsku su predstavljali v.d. ravnatelja Državnog hidrometeorološkog zavoda (DHMZ) mr.sc. Ivan Čačić (glavni delegat) te pomoćnik ravnatelja dr. sc. Krešo Pandžić (delegat).

Sjednicu je otvorio generalni tajnik WMO-a Michel Jarraud (slika 3). Srdačno je pozdravio predsjednika WMO-a Dr. A. Bedridskog, a ujedno i direktora Ruske federalne službe za hidrometeorologiju i praćenje okoliša, predstavnike lokalnih vlasti grada domaćina, A.I. Guseva vršitelja dužnosti predsjednika CBS-a kao i ostale sudionike.

Direktor programa Svjetsko meteorološko obilježenje (Worl Weather Watch -WWW), Mr. D. Schiessl pročitao je zemlje koje su u redu prijavljene za sjednicu. Među njima pročitana je i Hrvatska.

Slika 3. Detalj sa otvaranja trinaeste sjednice CBS-a u Petrogradu

Budući da su mandati predsjednika i potpredsjednika istekli, tijekom sjednice održani su izbori za te funkcije. Za svaku od funkcija predloženo je više kandidata (za predsjednika 3 i potpredsjednika 2). Za predsjednika je izabran prethodni vršitelj dužnosti predsjednika A.I. Gusev (Ruska federacija; slika 4) u drugom krugu glasovanja, a za potpredsjednika G.R. Hoffman (Njemačka) u prvom krugu.

Stručni zaključci sa sjednice

Slijedio je izvješće Radne grupe za integrirane opažačke sustave (Integrated Observing Systems - IOS) koji je pripremio predsjedavajući te radne grupe. Naglašena je potreba određene prilagodbe GOS-a sukladno trendovima meteorološke prakse, na primjer potrebama numeričke prognoze vremena čija uspješnost jako ovisi o kvaliteti početnih uvjeta tj. motrenjima. Očekuje se porast broja automatskih me-
teoroloških postaja kao i unapređenje postojećeg sustava daljinskih motrenja (radari i sateliti). Naglašena je važnost Globalnog klimatskog opažačkog sustava (Global Climate Observing System - GCOS) kao i programa AMDAR (Aircraft Meteorological Delay Relay). Istaknuto je pitanje prelaska na Vaisala RS92 radiosonde do kraja 2005. godine. Konačno, iznesena je informacija o osnivanju WMO projekta GEOSS (Global Earth Observing System of Systems) čija je zadaća objedinjavanje i unapređenje zemaljskih opažačkih sustava (meteoroloških, hidroloških, ekoloških i dr.). Hrvatska je zajedno s članicama Europske unije postala aktivni sudionik projekta o čemu je više izvješćeno u izdanjima ovog Biltena.

Radna grupa informacijskih sustava i usluga (Information Systems and Services - ISS) osvrnila se na pitanje šifriranja podataka u alfanumeričkom i binarnom obliku. Posebna pažnja posvećena je izradi planova za prelazak na binarno šifriranje tj. na BUFR (Binary Universal Form for the Representation of meteorological data). Napravljen je plan postupnog prelaska na BUFR. Već se počelo s prelaskom, a službeno će se uključiti ti kodovi (paralelno s klasičnim) u studenom 2005. godine za skupinu izvještaja: SYNOP, TEMP, PILOT i CLIMAT dok se kompletan prelazak očekuje 2010. godine. Satelitska i radarska motrenja se praktično već razmjenjuju u BUFR kodu, dok je za ostala izvješća rok prelaska na binarno kodiranje 2012. odnosno 2015. godina. Njemačka meteorološka služba (Deutscher Wetterdienst - DWD) ponudila je softverski paket za BUFR po simboličkim cijenama dok ECMWF takve pakete nudi bez naknade.

Radna grupa za procesiranje podataka i prognoštičke sustave (Data Processing and Forecasting Systems - DPFS) ističe važnost provođenja načela nadzora kvalitete (Quality Management Framework - QMF) za prognozu vremena radi očuvanja digniteta NMHS-a i očuvanje povjerenja korisnika. Spomenuto je pitanje održanja treninga za praktičnu primjenu ansambla prognoza (Ensemble Prediction System - EPS) uključujući verifikacije. Zanimljiv je prijedlog za definiciju pojave opasnog vremena:

“Meteorološka ili hidrometeorološka pojava koja može štetno djelovati na ljude, njihova dobra i državnu infrastrukturu, na bilo kojoj prostornoj ljestviči u razdoblju do nekoliko tjedana, s kojom treba upoznati javnost i odgovarajuće razine vlasti s ciljem smanjenja mogućeg štetnog utjecaja.”

Radna grupa za predstavljanje vremena u medijima (Public Weather Services - PWS) istaknula je aktivnost eksperta koji su izložili svoja dostignuća na tehničkoj konferenciji koja je prethodila trinaestoj sjednici CBS-a (za detalje vidjeti priloženo izvješće s te konferencije). Izložena su dostignuća na razvoju WMO web stranice u Hong Kongu koja pribavlja osnovne klimatske i vremenske informacije za javnost i druge medije. Bitno je naglasiti da su izvor tih informacija državne meteorološke i hidrološke službe (svaka za svoje područje).

mr.sc. Ivan Čačić
dr.sc. Krešo Pandžić
Britanska meteorološka služba (Met Office, Exeter, UK) u okviru Svjetske meteorološke organizacije (WMO) ima, zajedno s francuskom meteorološkom službom (Meteo France), ulogu Regionalnog specijaliziranog centra (Regional Specialized Meteorological Centre, RSMC) u slučaju prirodnih i civilizacijskih katastrofa i to za područje WMO regije VI koja pokriva Europu i Afriku.

Od 07. do 09. ožujka 2005. u Met Office-u, Exeter, UK, organizirana je stručna radionica (RSMC Workshop) na temu kako su europske nacionalne meteorološke službe osposobljene i organizirane s obzirom na prognozu i izdavanje upozorenja na opasna vremenska stanja. Također je dan osvrt na sadašnje stanje i budući razvoj te mogućnosti Met Office-a kao Regionalnog specijaliziranog centra. Sudionici radionice (predstavnici europskih nacionalnih meteoroloških službi) prikazali su primjenu produkata numeričkih modela u njihovoj službi, s posebnim osvrtom na uporabu produkata iz RSMC-a te njihova iskustva u prognozi opasnih meteoroloških pojava. Jedna od tema razgovora je bila i međunarodna ope- rativna suradnja u vremenskoj prognozi u slučaju prirodnih i civilizacijskih katastrofa.

EMMA projekt (European Multi-Service Meteorological Awareness) u kojem trenutno sudjeluje većina zemalja Europske unije, ima namjeru uspostaviti jedinstveno mjesto gdje će se moći dobiti službene informacije nacionalnih meteoroloških službi o upozorenjima na opasna vremenska stanja. Na našoj je službi, prije pridruživanja ovom projektu, maksimalno se harmonizirati i razraditi vlastiti sustav upozorenja na prirodne i civilizacijske nepogode i katastrofe.

dr. sc. Vlasta Tutiš
dr. sc. Branka Ivančan-Picek
IZVANREDNI METEOROLOŠKI I HIDROLOŠKI DOGAĐAJI
U NOVINSKIM IZVJEŠĆIMA U HRVATSKOJ U OŽUJU 2005. GODINE

1. ožujak 2005.

Bura, na sjevernom Jadranu, neke brodske linije bile su u prekidu. Jadranska autocesta od Bakra do Švete Marije Magdalene zatvorena za pojedine kategorije vozila.

2. ožujak 2005.

U Virovitičko podravskoj županiji temperatura se spustila na oko -20°C, Dravom plutaju sante leda.

Bura, u Senju, puhala 110 km/h, zaledila se obala.

Niske temperature zraka, na više mjesta na Jadranu na plažama se stvorile velike sige, zaleđena je i sama obala. Na Pagu pronadena smrznuta korušaca želva.

Vransko jezero kod Biograda se sve više ledi, a ptice nemaju hrane, pa su odletjele prema moru.

Snijeg, promet se u cijeloj Hrvatskoj odvijao otežano.

U Zagrebu palo desetak cm snijega. Slične količine pale su i u Karlovcu. Prometovanje kroz Gorski kotar i Liku je i danas zabranjeno za pojedine kategorije vozila, ali i na cestama prema Sloveniji.

Na području Siska palo oko 5 cm snijega, što je uzrokovalo kašnjenje u autobusnom i željezničkom prometu. U Osijeku je novih 15 cm snijega zadalo nevolje uglavnom pješacima.

Snježna lavina, srušila se sa Biokova, na predjelu ispod vrha Svetog Iljje prema unutrašnjosti kontinenta. Zabilježena je na dva mjesta. Trag lavine je dužine oko jednog kilometra, i širine 150 metara. Svo drveće koje se našlo na putu je srušeno pod naletom snijega i kamenja.

5. ožujak 2005.

Snijeg, padao je u unutrašnjosti zemlje i u Dalmatinskoj zagori. U Lici i Gorskom kotaru je pa-
lo oko 30 cm snijega, pa su postavljena ograničenja prometovanja. Promet se inače odvijao otežano i usporeno. Na prometnicama u Istri je mjестимice bilo poledice. U Zagrebu je pao desetak cm snijega. Dvadesetak građana završilo je u bolnici zbog prijeloma nastalih padom na kliskim prometnicama. U Slavoniji je pali oko 15 cm snijega, pa se promet odvijao otežano, bilo je kašnjenja u javnom autobusnom prijevozu.

Na obali je padala kiša, koja je izazvala brojne odrone.

Snijeg, pao na Pelješcu i Korčuli, visina mu je 6 cm, teretnim vozilima zabranjen je promet poluotokom. U Metkoviću je pali 5 cm snijega.

Magla, u unutrašnjosti Hrvatske, promet se odvijao usporeno i uz teškoće.

7. ožujak 2005.

Snijeg, pao u Dubrovniku, prometovanje je bilo otečano.

Bura, na području Dubrovnika otečavala promet, avio promet je prekinut. Most preko Rijeke dubrovačke bio je zatvoren za sav promet.

Zbog poledice nije bilo nastave u dvije osnovne škole u okolici Dubrovnika.

8. ožujak 2005.

Snijeg, ponovo pada u Gorskom kotaru, promet teče otečano.

Potres, na području Rijeke, dogodio se u 15 sati i 47 minuta. Štete nisu prijavljene. Magnituda je bila 3.1 po Richteru, a intenzitet je procijenjen na IV do V stupanj MCS ljestvice.

15. ožujak 2005.

Magla, u Zadru, bila je vrlo gusta, znatno je otečavala pomorski promet.

Visoki vodostaji rijeka. Za Dravu kod Osijeka proglašene pripremnje mjere obrane od poplava. Te mjere već su na snazi za Dunav kod Batine. Naselje Zeleni otok je i dalje pod vodom.

27. ožujak 2005.

Obilna kiša, u Zagrebu, neke ulice u gradu bile su pod vodom. Najviše su plivali podvožnjaci, no
više kao posljedica začepljenih slivnika nego količine pale oborine.

U Liku se sa planina slijevaju bujice vode, jer se snijeg naglo topi, pa je bilo poplavljenih kuća i lokalnih prometnica.

Visoki vodostaji rijeka, poplave, Zeleni otok je i dalje pod vodom Dunava.

Visoki vodostaji rijeka, karlovačke rijeke su u naglom porastu, posebno Kupa. Razlog je topljenje snijega u Lici i Gorskom kotaru.

29. ožujak 2005.

Visoki vodostaji rijeka, Dunav u nekoliko dana porastao 4 metra, Sava 6 metara.

30. ožujak 2005.

Visoki vodostaji rijeka. Una mjestimice izlila iz korita. Poplavljen granični prijelaz prema BiH kod Hrvatske Kostajnice, nogometno igralište. Sava kod Slavonske Broda još ne stagnira, pa su i dalje na snazi pripremne mjere za obranu od poplava. Ista je situacija i kod Županje.

Bura, na području Istre, ribarice su morale ostati u lukama.