Fotografiju na naslovnici snimio Ivan Lukac
METEOROLOŠKI I HIDROLOŠKI BILTEN
8 / 2019.
Sadržaj

VREMENSKE PRILIKE ... 7
 Sinoptička situacija (Marija Mokorić, dipl. inž.) ... 7
 Analiza ljeta 2019. po tipovima vremena (Dunja Plačko-Vršnak, dipl. inž., Marija Mokorić, dipl. inž., Krunoslav Mikec, dipl. inž.) ... 9
 Klimatološka analiza (dr. sc. Tanja Likso) ... 15
 Praćenje kišnih i sušnih uvjeta (Ivana Marinović, mag. phys.-geophys., Domagoj Mihajlović, dipl. inž.) ... 22
 Temperatura mora (Željka Pogačić, mag. phys.-geophys.) ... 25

HIDROLOŠKE PRILIKE .. 27
 Površinske vode (Tomislava Bošnjak, inž.) ... 27
 Podzemne vode (Ivan Bertović, prof.) .. 30

EKOLOŠKE PRILIKE ... 33
 Meteorološke karakteristike (Domagoj Mihajlović, dipl. inž.) .. 33
 Onečišćenje zraka i oborine (Ivona Igrec, dipl. inž.) .. 34

BIOMETEOROLOŠKE PRILIKE (mr. sc. Lidija Cvitan) .. 35

SUNČEVO ZRAČENJE (Marinko Marelja, mag. inž. min.) .. 37

AGROMETEOROLOŠKE PRILIKE (dr. sc. Mislav Anić) .. 40

ŠUMSKI POŽARI (Marija Mokorić, dipl. inž., Lovro Kalin, dipl. inž.) .. 42

OBRANA OD TUČE (Damir Peti, dipl. inž.) .. 43

KNJIŽNICA DHMZ-a (mr. sc. Ivančica Mihovilić) .. 45

IZVANREDNI METEOROLOŠKI I HIDROLOŠKI DOGAĐAJI
U NOVINSKIM IZVJEŠĆIMA U HRVATSKOJ U KOLOVOZU 2019. GODINE
(Davor Nikolić, dipl. inž.) .. 50

ZANIMLJIVOSTI I DOGAĐAJI
(pripremila Sunčica Švaco, dipl. komp. i etnol.) ... 52
Sinoptička situacija
Marija Mokorić, dipl. inž.

1. i 2. kolovoza je bilo djelomice sunčano, ali vrlo nestabilno s mjестимичним grmljavinskim pljuskovima. Bilo je vrlo toploto i vruće te sparno.

Prizemno je bilo uglavnom polje srednjeg i malo sniženog tlaka zraka, ali nestabilno s mjestimiti pljuskacima, pa i tuča.

Potkraj 2. i u noći na 3. kolovoza uz povećanu naoblaku bilo je sunčanog vremena, ali je dalje bilo nestabilno, poslijepodne uz razvoj konvektivnih oblaka. Slabo i umjereno vjetrovi su omogućile izazvati vjetar te jugo.

Odlukom od 4. do 7. kolovoza je bilo pretežno sunčano, a krajem razdoblja vruće, ponegdje na Jadranu i vrlo vruće s toplom noćima.

Prizemno je bilo ogranak anticiklone koji je postupno umjerio zrak rastući. Od 4. do 7. kolovoza je bilo pretežno sunčano, a krajem razdoblja vruće, ponegdje na Jadranu i vrlo vruće s toplom noćima.

Prizemno je bilo ogranak anticiklone koji je postupno umjerio zrak rastući. Od 4. do 7. kolovoza je bilo pretežno sunčano, a krajem razdoblja vruće, ponegdje na Jadranu i vrlo vruće s toplom noćima.

Prizemno je bilo ogranak anticiklone koji je postupno umjerio zrak rastući. Od 4. do 7. kolovoza je bilo pretežno sunčano, a krajem razdoblja vruće, ponegdje na Jadranu i vrlo vruće s toplom noćima.
žije. Posljepodne je u unutrašnjosti bilo konvektivnih oblaka i rijetkih lokalnih nestabilnosti.

Po visini je bio utjecaj termobaričkog grebena u kojem je iz sjeverne Afrike pritjecao vrlo topao zrak. Stoga su od 11. do 13. kolovoza minimalne temperature i u unutrašnjosti nerijetko bile više od 20°C, a na Jadranu su bile vrlo tople noći.

Prizemno je bilo polje povišenog i srednjeg, a zatim sniženog tlaka zraka. U noći na 11. kolovoza u naše predjele je prodrla manja količina svježeg zraka. Oboine uglavnom nije bilo, ali je u unutrašnjosti prolazno zapuhao sjeverni vjetar, a na Jadranu je kratkotrajno pojačala bura uz manji pad maksimalne temperature.

Tih je dana prevladavalo vedro vrijeme, a više oblaka bilo je u unutrašnjosti 11. kolovoza.

13. kolovoza visinski greben je slabio te je po- čeo pritjecati vlažan i nestabilan zrak. Bilo je sparno s lokalnim pljuskovima i grmljavinom. U Dalmaciji i na istoku zemlje je bilo pretežno sunčano, a u ostalim dijelovima zemlje bilo je sveže i nestabilna. Zapuhao je sjeverni i sjeveroistočni vjetar, a na Jadranu postupno bura i sjeverozapadnik.

Slika 5. Satelitska snimka oblaka u vidljivom dijelu spektra 3. kolovoza 2019. godine u 12.00 UTC (izvor EUMETSAT).

Na vrijeme je utjecao ograničeni sustav zraka, a po visini i pritjecajalo malo svježijih zraka. Mjestomićih oborina je bilo osobito 16. kolovoza. Zbog toga je bila u unutrašnjosti razmjerne svježje, a danju je bilo uvlagnovo vrlo toplo, a na Jadranu i vruće.

Na vrijeme je utjecao ograničeni sustav zraka, a po visini i pritjecajalo malo svježijih zraka. Mjestomićih oborina je bilo osobito 16. kolovoza. Zbog toga je bila u unutrašnjosti razmjerne svježje, a danju je bilo uvlagnovo vrlo toplo, a na Jadranu i vruće.

Na vrijeme je utjecao ograničeni sustav zraka, a po visini i pritjecajalo malo svježijih zraka. Mjestomićih oborina je bilo osobito 16. kolovoza. Zbog toga je bila u unutrašnjosti razmjerne svježje, a danju je bilo uvlagnovo vrlo toplo, a na Jadranu i vruće.

premještanjem hladne fronte i visinske doline te jačanjem grebena anticiklone sa sjeverozapada kontinenta posvuda je osvježilo. Sljedećih dana je bilo razmjerno vjetrovnito. Na Jadranu je puhala umjerena i jaka bura i sjeverozapadnjak, mjestimice s olujnim udarima. Do kraja mjeseca je opet zatopilo, bilo je većinom vruće i sparno, ali više nije bilo ekstremnih vrućina, a i prodori svježijeg i vlažnog zraka bili su manje izraženi.

Daljnje sinoptičke analize, posebice srednjih mješovitih visinskih strujanja dat će dodatni uvid u vremensku sliku u ljetnoj sezone.

Analiza vremenskih prilika u ljetnim mjesecima 2019.

godine preko srednjih mjesečnih visinskih stanja

Na vrijeme osim sinoptičkih prilika u prizemnom sloju atmosfere, odnosno prizemnog polja tlaka zraka, utječe i stanje atmosfere u višim slojevima.

Posebno je važna situacija na visini oko 5.5 km – na izobarnoj plohi AT 500 hPa, te na visini oko 1.5 km – na izobarnoj plohi AT 850 hPa.

Na njima se mogu uočiti strujanja po visini i visinski atmosferski sustavi koji u značajnoj mjeri utječu na vrijeme u prizemnim slojevima. Pri tome je srednje mjesečno stanje atmosfere po visini pokazatelj srednjeg mjesečnog strujanja nad određenim područjem, odnosno nad sjevernom hemisferom.

Za takvu analizu korišteni su podaci Europskog centra za srednjoročne vremenske prognoze u Readingu (ECMWF) u 12 UTC.

Lipanj 2019.

Prema srednjem mjesečnom stanju atmosfere na izobarnoj plohi AT 500 hPa (slika 7) od sjevera Afrike do naših krajeva pružao greben. Njegova je os bila točno iznad nas i u takvim nam je okolnostima uglavnom prijetjela, te se iznad nas zadržavao topao i većinom suh zrak. Na izobarnoj plohi AT 850 hPa prema srednjem mjesečnom stanju je također bio greben koji je bio jače izražen nego onaj na AT 500 hPa. On je glavnom bio položen istočnije od nas te nam je stoga s juga i jugozapada na njegovoj stražnjoj strani i u nižim slojevima atmosfere pritjecao topao zrak.

Srpanj 2019.

Prema srednjem mjesečnom stanju atmosfere na izobarnoj plohi AT 500 hPa u srpnju (slika 8) je iznaj
zapadne Europe bio greben koji se pružao od Afrike do Sjevernog i Baltičkog mora. Na njegovoj prednjoj strani sa sjeverozapada i zapada je u naše krajeve pritjecao ne toliko topao, no vlagom relativno bogat zrak. Na izobarnoj plohi AT 850 hPa u srpnju se prema srednjem mjesečnom stanju od jugozapada prema sjeveroistoku pružao greben. No, unutar grebena u Sredozemlju je zapadno od Italije bila plitka dolina tako da je iznad našeg područja bilo difluentno polje izohipsi, odnosno bezgradijentno polje u sklopu kojeg nam je povremeno pritjecao vlazan zrak te je bilo uvjeta za nesatibilitet.

Kolovoz 2019.

U kolovozu se na izobarnoj plohi AT 500 hPa (slika 9) prema srednjem mjesečnom stanju od Islanda do jugozapada Europe pružala dolina, a istočnije je od nje bio termobariki greben čija je os bila malo istočnije od nas. Pritom nam je na njegovoj stražnjoj strani pritjecao vrlo topao i vlagom ne odveć bogat zrak. Na izobranoj plohi AT 850 hPa iznad našeg je dijela Europe bio izraženi termobariki greben bez gradijenata u polju izohipsi, te se stoga i u nizim slojevima atmosfere iznad nas zadržavao vrlo topao zrak.

Rezultati i diskusija

Unutrašnjost Hrvatske

Analiza vremenskih režima za ljeto 2019. u unutrašnjosti Hrvatske (slika 10) pokazuje kako je najveću relativnu čestinu imao radijaciji režim koji je zabilježen u oko 86% dana tijekom cijele sezone. U svakome je od 3 ljetna mjeseca bio zabilježen u 25 ili više dana (najviše u lipnju čak 28 dana).

Analiza vremenskih tipova (slika 11) pokazuje da je ovog ljeta najčešći vremenski tip bio bezgradijentno anticiklonalno (Ba) polje s relativnom frekvencijom od oko 39%. Više od jedne trećine svakog ljetnog mjeseca imalo je ovaj tip vremena. Potom slijedi greben visokog tlaka (g) s relativnom učestalosti od oko 15%, što je oko srednjaka za razdoblje 1971. – 2000. Od ostalih tipova koji pripadaju radijacijskom režimu razmjerno je čest bio tip donja (južna) strana anticiklone (V2) s frekvencijom od oko 14% te bezgradijentno ciklonalno (Bc) polje s frekvencijom od oko 10%.

Od tipova vremena koji pripadaju oborinskom režimu relativno su česti bili oni vezani uz prolazak fronte, odnosno doline (Dol1 i Dol2), dok su oni povezani s djelovanjem ciklone bili rijetki (samo 1 dan s tipom prednja (istočna) strana ciklone (N1)).

Sjeverni Jadran

Analiza vremenskih režima na sjevernom Jadranu pokazuje kako je radijacijski režim, isto kao i u unutrašnjosti, imao najveću relativnu frekvenciju – zabilježen je u oko 84% dana, što je za oko 20% više od prosjeka za razdoblje 1971. – 2000. (slika 12). Kao u unutrašnjosti, najčešći je bio u lipnju kada je čak 28 dana imalo

neki od tipova vremena koji pripadaju ovom režimu. U srpnju i kolovozu njegova je učestalost bila malo manja (po 25 dana u mjesecu imalo je ovaj režim).

Oborinskog je režima bilo malo manje od prosjeka za razdoblje 1971. – 2000. U lipnju nije zabilježeni niti jedan dan s nekim od tipova vremena koji pripadaju ovom režimu, a u preostala dva mjeseca zabilježen je po 3 puta.

Vjetrovnog režima je režima bilo malo više nego što je uobičajeno, no njegova je prosječna učestalost inače mala. Advekcije s jugoistoka također je bilo malo, odnosno oko prosjeka, a režima iz grupe ostalo bilo je zamjetno manje nego što je bilo uobičajeno u referentnom razdoblju 1971. – 2000.

Analiza učestalosti vremenskih tipova na sjevernom Jadranu pokazuje kako je i ovdje najčešći vremenski tip bio bezgradijentno anticiklonalno (Ba) polje koje se pojavilo u oko 39% dana. Bezgradijentno ciklonalno (Bc) polje imalo je relativnu učestalost od oko 14%. Zbroj frekvencija ta dva tipa pokazuje kako je više od polovine ljeta bilo obilježeno bezgradijentnim prizemnim poljem tlaka. U takvim je okolnostima, uz greben po visini, što je najčešće bio slučaj, vrijeme bilo stabilno, suho i većinom vrlo toplo i vruće. Uz neki drugi visinski tip, primjerice dolinu ili bezgradijetno polje unutar doline ili dotok vlažnijeg zraka sa zapada i sjeverozapada na prednjoj strani grebena, moglo je biti uvjeta za konvektivni razvoj oblaka te mjestimičnu kišu, što je bio slučaj u prvoj polovici srpnja te u pojedine dane u kolovozu.

Dani s oborinskim tipovima vremena, kao što se već naglasilo u analizi režima, nisu bili česti. Zabilježen je samo poneki dan s prolaskom fronte, odnosno doline s veća 2 dana s djelovanjem ciklone, odnosno s tipom vremena prednja (istočna) strana ciklone (N1).

Krajem lipnja i početkom srpnja zabilježena su po dva dana s tipovima sjerverno (NS) i istočno (ES) stanje, koji pripadaju vjetrovnom režimu.

Srednji i južni Jadran

Prema analizi vremenskih režima na srednjem i južnom Jadranu (slika 14) radijacijski je režim bio najzastupljeniji, s relativnom frekvencijom od oko 84% na srednjem, odnosno 79% na južnom Jadranu. Kao i u ostalim krajevima, najviše je dana s nekim od tipova vremena koji pripadaju ovom režimu bilo u lipnju, čak 28.

Učestalost oborinskog režima bila je jednaka u oba područja, pri čemu su dani s ovim režimom zabilježeni u srpnju i kolovozu.

Vjetrovni je režim također imao jednak relativnu frekvenciju na srednjem i južnom Jadranu, a režima iz grupe ostalo bilo je na južnom Jadranu malo više nego na srednjem.

Od vremenskih tipova na srednjem i južnom Jadranu (slika 15) najveće je učestalost kao i drugdje u Hrvatskoj imao tip bezgradijentno anticiklonalno polje (Ba). Potom slijedi tip donja (južna) strana anticiklone (V2) koji je zabilježen u oko 16% dana. To su bili dani u kojima se središte anticiklone premještao sjeverije od naših krajeva uzrokujući kod nas stabilno i suho te vrlo toplu, odnosno vruću vrijeme. Od drugih radijacijskih tipova relativno su veliku učestalost imali bezgradijentno ciklonalno (Bc) polje te greben visokog tlaka (g) koji je na srednjem Jadranu bio malo češći nego na južnom. Razlika u učestalosti tog tipa vremena s druge strane kompenzirana većom učestalostima tipa stražnja strana zonalne doline (zodol3) koji je pak češći bio na južnom nego na srednjem Jadranu. Taj je tip povezan uz gotovo zonalno položenu dolinu od Male Azije i istočnog Sredozemlja prema Jadranu pri čemu se ta dolina najčešće pružala do juga Jadrana, a sjevernije je bio utjecaj grebena sa zapada ili sjeverozapada.

Tipovi vremena koji pripadaju vjetrovnom režimu bili su uglavnom rijetki, a po relativnoj rješetki, odnosno njihova je relativna frekvencija ovog ljeta u ovim područjima bila vrlo slična kao i u unutrašnjosti i na sjevernom Jadranu.

Slično vrijedi i za tipove povezane uz djelovanje ciklone, a tipovi vezani uz prolazak fronte, odnosno

doline, na srednjem su i južnom Jadranu bili još manje česti nego drugdje u Hrvatskoj.
Zato je 2 puta tijekom ljeta zabilježen tip vremena dolina (Dol), karakterističan tip za predjelo na Jadranu pri čemu dolina koja je tih dana vidljiva u polju tlaka ima oblik bazena Jadranskog mora. Taj tip pripada u grupu režima ostalo.

Zaključak

Ljeto 2019. godine bilo je karakteristično po iznadprosječnoj toplini te vrućini i sparini u većem dijelu sezone.
Radijacijski je režim bio najčešći. Od 70 do 79 dana, kako u kojoj regiji (od ukupno 92 koliko ih ima ljeto), imalo je neki od tipova vremena koji pripadaju ovom režimu. Pritom je najčešći tip u svim područjima bio bezgradijentno anticiklonalno (Ba) polje s relativnom učestalosti od oko 39%.

Djelovanje anticiklone ili ogranka anticiklone sa ili bez gradijenata u polju tlaka te ciklonalnog polja bez gradijenata obilježili su prizemnu sinoptičku situaciju ovog ljeta.

Tipova vremena koji pripadaju oborinskog režima bilo je vrlo malo (od 5 do 9 dana u cijeloj sezoni imalo je neki od oborinskih tipova vremena). No, dana s kišom, uglavnom lokalnom, pljuskovitog karaktera, bilo je zamjetno više. Naime, prizemno bezgradijentno polje ili djelovanje ogranka anticiklone u kombinaciji s visinskim tipovima vremena kao što su dolina, bezgradijentno polje ili prednja strana grebena, omogućuju konvektivni razvoj oblaka na manjem području pri čemu nerijetko bude pljuskova praćenih grmljavinom te olujnih nevremena uz veću količinu kiše u malom vremenskom razdoblju. To je tipično ljeti, a ovog ljeta bilo je nizova dana s čestim ovakvim situacijama u nekim dijelovima Hrvatske, poglavito kontinentalnim.
Klimatološka analiza

Apsolutna maksimalna temperatura zraka u kolovozu 2019. bila je viša od odgovarajućeg prosjeka

Tablica 1. Pregled apsolutnih maksimalnih temperatura zraka za KOLOVOZ 2019. godine i usporedba s raspoloživim nizom dotičnih postaja. Navedene su vrijednosti za samo one postaje koje su uključene u analizu klimatskih anomalija u Republici Hrvatskoj.

<table>
<thead>
<tr>
<th>Naziv meteorološke postaje</th>
<th>Godina od kada su raspoloživi podaci</th>
<th>Vrijednost najviše izmjerene temperature (°C) u kolovozu (do 2018.) u razdoblju od kada su raspoloživi podaci</th>
<th>Datum kada je postignuta najviša vrijednost (* označava nepotpun niz)</th>
<th>Vrijednost najviše izmjerene temperature (°C) u kolovozu 2019.</th>
<th>Datum kada je postignuta vrijednost najviše izmjerene temperature u kolovozu 2019.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knin</td>
<td>1949.</td>
<td>42.3</td>
<td>10.8.2017.*</td>
<td>41.0</td>
<td>12.8.</td>
</tr>
<tr>
<td>Karlovac</td>
<td>1949.</td>
<td>40.5</td>
<td>4.8.2017.</td>
<td>34.5</td>
<td>10.8.</td>
</tr>
<tr>
<td>Hvar</td>
<td>1858.</td>
<td>37.7</td>
<td>8.8.1956.*</td>
<td>36.0</td>
<td>12.8.</td>
</tr>
<tr>
<td>Split - Marjan</td>
<td>1948.</td>
<td>38.5</td>
<td>13.8.2015.</td>
<td>36.7</td>
<td>12.8.</td>
</tr>
<tr>
<td>Komiža</td>
<td>1981.</td>
<td>38.7</td>
<td>10.8.1999.*</td>
<td>35.9</td>
<td>11.8.</td>
</tr>
<tr>
<td>Sisak</td>
<td>1949.</td>
<td>40.0</td>
<td>24.8.2012.</td>
<td>34.6</td>
<td>10.8.</td>
</tr>
<tr>
<td>Bjelovar</td>
<td>1949.</td>
<td>38.5</td>
<td>24.8.2012.</td>
<td>34.5</td>
<td>12.8.</td>
</tr>
<tr>
<td>Zagreb - Grič</td>
<td>1861.</td>
<td>38.8</td>
<td>8.8.2013.*</td>
<td>34.6</td>
<td>12.8.</td>
</tr>
<tr>
<td>Gospić</td>
<td>1872.</td>
<td>37.5</td>
<td>5.8.2017.*</td>
<td>34.6</td>
<td>12.8.</td>
</tr>
</tbody>
</table>
Odstupanja su bila u rasponu od 0.2°C (Varaždin) do 4.2°C (Knin). Usporedba s raspoloživim nizom analiziranih postaja (tablica 1) pokazuje da u kolovozu 2019. godine nije bilo rekordnih vrijednosti temperature zraka.

Prema raspodjeli percentila, toplinske prilike u Hrvatskoj za kolovoz 2019. opisane su dominantnom kategorijom vrlo topli izuzevši šire područje Varaždina te dio sjevernog i srednjeg Jadrana i zaleda koji se nalaze u kategoriji topli.

Srednja mjesečna maksimalna temperatura zraka za kolovoz 2019. kretala se u rasponu od 19.9°C na Zavižanu do 34.0°C u Kninu. U odnosu na višegodišnji prosjek (1981. – 2010.) srednje mjesečne maksimalne

<table>
<thead>
<tr>
<th>Izvanredno topli dani</th>
<th>10</th>
<th>12</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srednja dnevna temp. zraka (°C)</td>
<td>28.4</td>
<td>28.6</td>
<td>26.5</td>
<td>26.8</td>
<td>27.0</td>
</tr>
<tr>
<td>Srednja dnevna temp. zraka (°C), raspoloživ niz (1861. – 2018.)</td>
<td>29.6</td>
<td>1863.</td>
<td>27.7</td>
<td>1933.</td>
<td>28.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Izvanredno topli dani</th>
<th>12</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srednja dnevna temp. zraka (°C)</td>
<td>30.6</td>
<td>29.1</td>
<td>28.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Izvanredno topli dani</th>
<th>11</th>
<th>12</th>
<th>22</th>
<th>23</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Srednja dnevna temp. zraka (°C)</td>
<td>31.8</td>
<td>32.4</td>
<td>30.6</td>
<td>30.2</td>
<td>29.7</td>
</tr>
</tbody>
</table>

Slika 17. Odstupanje mjesečne količine oborine (izražene u %) za mjesec KOLOVOZ 2019. od prosječnih vrijednosti (1981. – 2010.)
Slika 18. Maksimalne i minimalne temperature zraka (°C) i dnevne količine oborine (mm) za KOLOVOZ 2019. godine
Slika 19. Srednje dnevne temperature zraka (°C) i njihove anomalije (°C) od dnevnog srednjaka za razdoblje 1981. – 2010. za KOLOVOZ 2019. godine
nji prosjek (1981. – 2010.) srednje mjesečne minimalne temperature zraka bile su iznad spomenutog prosjeka. Odstupanja srednje mjesečne minimalne temperature zraka u kolovozu su se kretala od 0.7°C (Knin) do 2.9°C (Bjelovar i Pazin). Apsolutni temperaturni minimumi su se nalazili u rasponu od 6.5°C na Zavižanu (15. kolovoza) do 22.2°C u Dubrovniku (7. kolovoza).

Srednje mjesečne minimalne temperature zraka za kolovoz 2019. bile su u rasponu od 12.2°C na Zavižanu do 24.4°C u Dubrovniku. U odnosu na višegodišnji prosjek (1981. – 2010.) srednje mjesečne minimalne temperature zraka bile su iznad spomenutog prosjeka. Odstupanja srednje mjesečne minimalne temperature zraka u kolovozu su se kretala od 0.7°C (Knin) do 2.9°C (Bjelovar i Pazin). Apsolutni temperaturni minimumi su se nalazili u rasponu od 6.5°C na Zavižanu (15. kolovoza) do 22.2°C u Dubrovniku (7. kolovoza).

U skladu sa standardnom operativnom praksom napravljena je i analiza izuzetnosti srednjih dnevnih temperature zraka za kolovoz 2019. za postaje Za-

<table>
<thead>
<tr>
<th>ZAGREB-GRIČ</th>
<th>Kolovoz 2019</th>
<th>16</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RIJEKA</th>
<th>Kolovoz 2019</th>
<th>20</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPLIT-MARJAN</th>
<th>Kolovoz 2019</th>
<th>27</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ZAGREB-GRIČ</th>
<th>Kolovoz 2019</th>
<th>18</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>RIJEKA</th>
<th>Kolovoz 2019</th>
<th>20</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>SPLIT-MARJAN</th>
<th>Kolovoz 2019</th>
<th>30</th>
</tr>
</thead>
</table>

Slika 20. Srednja dnevna temperatura zraka za Zagreb-Grič, Split-Marjan i Rijeku za KOLOVOZ 2019. godine u usporedbi s dugogodišnjim srednjim vrijednostima (t) i standardnim devijacijama (σ).

Analiza količina oborine za kolovoz 2019. godine koje su izražene u postocima (%) višegodišnjeg prosjeka (1981. – 2010.) pokazuje da su količine oborine bile većinom ispod višegodišnjeg prosjeka, dok je u Pazinu bila jednaka prosjeku. Usporedba s višegodišnjim prosjekom pokazuje da se količine oborine za kolovoz 2019. godine nalaze u rasponu od 3% višegodišnjeg prosjeka u Komiži (0.8 mm) do 120% tog prosjeka u Osijeku (82.2 mm).

Oborinske prilike u Hrvatskoj za kolovoz 2019. godine opisane su sljedećim kategorijama: vrlo sušno (šire područje Bjelovara), sušno (dio središnje i istočne Hrvatske, dio sjevernog Jadrana i zaleđa te šire područje Dubrovnika) i normalno (preostali dio Hrvatske).

Najveća dnevna količina oborine u kolovozu 2019. iznosila je 66.2 mm, a izmjeren je 3. kolovoza u Varaždinu. Najveću mjesecnu količinu oborine za mjesec kolovoz 2019. imala je postaja Parg gdje je mjesecna količina oborine iznosila 103.9 mm.

Broj sati sijanja Sunca u kolovozu 2019. na većini analiziranih postaja bio je viši od višegodišnjeg prosjeka (1981. – 2010.). Odstupanja su se kretala od -16.5 sati u Ogulinu gdje je zabilježeno ukupno 244.2 sata sijanja Sunca do 51.2 sata u Osijeku gdje je mjesecna suma sijanja Sunca iznosila 310.0 sati. Pozitivne odnosno negativne anomalije broja sati sijanja Sunca u skladu su s negativnim odnosno pozitivnim anomalijama srednje mjesecne naoblake.

Analiza klimatskih anomalija na području Hrvatske za LJETO 2019. godine

Prema raspodjeli percentila, toplinske prilike u Hrvatskoj za ljeto 2019. opisane su sljedećim kategorijama: vrlo topl (istočna Hrvatska, šire područje Varaždina te dio sjevernog, srednjeg i južnog Jadrana) i ekstremno topl (preostali dio Hrvatske).

Analiza ljetnih količina oborine izraženih u % ljetnih vrijednosti (1981 – 2010.) pokazuje da su količine oborine u Hrvatskoj većinom bile ispod prosjeka. Količine su se kretale od 37% ljetnih količina oborine u Hvaru do 128% spomenutog prosjeka u Varaždinu.

Prema raspodjeli percentila oborinske prilike u Hrvatskoj za ljeto 2019. svrstane su u sljedeće kategorije: sušno (šire područje Zagreba, Bjelovara i Siska te dio sjevernog i srednjeg Jadrana), vrlo sušno (šire područje Parga), kišno (šire područje Varaždina) i normalno (preostali dio Hrvatske).

Slika 22. Odstupanje količine oborine (izražene u %) za LJETO 2019. od prosječnih vrijednosti (1981 – 2010.)

Praćenje kišnih i sušnih uvjeta

Ivana Marinović, mag.phys.-geophys. Domagoj Mihajlović, dipl. inž.

Prema raspadali percentila i toplinske prilike u Hrvatskoj za ljeto 2019. opisane su sljedećim kategorijama: vrlo topl (istočna Hrvatska, šire područje Varaždina te dio sjevernog, srednjeg i južnog Jadrana) i ekstremno topl (preostali dio Hrvatske).

Analiza ljetnih količina oborine izraženih u % ljetnih vrijednosti (1981 – 2010.) pokazuje da su količine oborine u Hrvatskoj većinom bile ispod prosjeka. Količine su se kretale od 37% ljetnih količina oborine u Hvaru do 128% spomenutog prosjeka u Varaždinu.

Prema raspadali percentila oborinske prilike u Hrvatskoj za ljeto 2019. svrstane su u sljedeće kategorije: sušno (šire područje Zagreba, Bjelovara i Siska te dio sjevernog i srednjeg Jadrana), vrlo sušno (šire područje Parga), kišno (šire područje Varaždina) i normalno (preostali dio Hrvatske).

Praćenje kišnih i sušnih uvjeta na dnevnoj skali

U kolovozu 2019. godine sušni i kišni uvjeti na dnevnoj skali analizirani su na 25 postaja u Hrvatskoj na način da su kumulativne količine oborine od početka do kraja kolovoza uspoređene s teorijskim percentilima, koji su izračunati pomoću srednjih mjesečnih vrijednosti količina oborine za kolovoz iz 40-godišnjeg razdoblja (1961 – 2000.). Analizirana su i trajanja sljedova sušnih i kišnih dana s dnevnom količinom oborine, Rd, manjom i većom od 1 mm.

Nakon pretežno normalnog do toplog srpnja uglavnom normalnih oborinskih prilikama, osim u nažalosti područjima Primorske i Središnje Hrvatske gdje su prevladale kišne do ekstremno kišne prilike, uslijedio je topao do vrlo topao kolovoz u kojem su prevladale normalne prilike, a na dijelu središnje i istočne Hrvatske te sjevernog i južnog Jadrana i sušne do vrlo sušne prilike.

U kolovozu su periodi s oborinom bili jednodnevni ili dvodnevni. Prva oborina zabilježena je na samom početku mjeseca posvuda, osim na Lastovu te u Bjelovaru, gdje je zabilježeno manje od 0.5 mm. U Osijeku, Puli i Varaždinu oborina je bila toliko obilna (preko 50, odnosno 65 l) da je premašila 98. percentil. Nakon toga je uslijedilo 10-dnevno sušno razdoblje na većiini postaja: 2-tjedno na postajama Lastovo i Bjelovar, 20-dnevno u Dubrovniku te 30-dnevno na postajama Mali Lošinj, Zadar i Hvar.

Prema tome može se zaključiti da su, nakon nekoliko dana s kišnim prilikama (percentil 75 do 90), na području Dalmacije (bez Dubrovnika), na postajama Senj i Mali Lošinj, na gorskim te kontinentalnim posta-
BILTEN 8 / 2019

jama (Zagreb Grič, Zagreb Maksimir, Sisak i Slavonski Brod) prevladale normalne prilike (percentil 25 do 75). U Osijeku, Puli i Varaždinu su nakon ekstremno kišnih prilika (percentil veći od 98) uslijedile vrlo kišne (percentil 90 do 98) do kišne prilike (percentil 75 do 90). Nakon normalnih prilika (percentil 25 do 75) u prvom dijelu mjeseca, u Pazinu su nakon obilne kiše krajem prve dekade, uslijedile kišne prilike (percentil 75 do 90), a u Dubrovniku i Bjelovaru zbog izostanka kiše, uslijedile su sušne (percentil 10 do 25) odnosno vrlo sušne prilike (percentil 2 do 10).

Treći tjedan kolovoza prevladale su normalne prilike (percentil 25 do 75), izuzev na postajama Osijek, Varaždin, Pula i Pazin, gdje su prevladale kišne prilike (percentil 75 do 90) te na postajama Bjelovar i Dubrovnik, gdje su prevladale sušne prilike (percentil 10 do 25). U tom periodu započelo je novo sušno razdoblje koje se na nekim postajama nastavilo u rujnu te potrajalo i do 19 dana (Bjelovar, Sisak, Pazin, Senj, Split, Šibenik, Lastovo i Zavižan).

Kolovoz je u Osijeku ocjenjen kao kišan (percentil 75 do 90), u Varaždinu, Zagrebu, Karlovcu, Pargu, Istri, Gospiću, Kninu i Šibeniku kao normalan (percentil 25 do 75), u Slavonskom Brodu, Križevcima, Sisku, Ogulinu, Rijeci, Senju, Zavižanu, Malom Lošinju, Zadru, Splitu i Hvaru kao sušan (percentil 10 do 25) te u Bjelovaru, Dubrovniku i na Lastovu kao vrlo sušan (percentil 2 do 10). Najmanje oborine u kolovozu zabilježeno je na postaji Lastovo, svega 2.7 l, a najviše na Pargu, približno 104 l.

Praćenje kišnih i sušnih uvjeta na vremenskoj skali od 1, 3, 6, 12, 24 i 48 mjeseci

U kolovozu 2019. godine zabilježeni su vrlo sušni uvjeti u Bjelovaru (SPI1: -1.65), a umjereno sušni uvjeti u Daruvaru, Dubrovniku, Malom Lošinju, Senju i Zavižanu (SPI1: -1.05, -1.13, -1.19, -1.03 i -1.29). Oborinski uvjeti unutar granica normale bili su u Gospiću, Hvaru, Karlovcu, Kninu, Križevcima, Ogulinu, Osijeku, Pargu, Pazinu, Rijeci, Sisku, Slavonskom Brodu, Split Marjanu, Šibeniku, Varaždinu, Zadru i Zagreb Maksimiru (SPI1;
Slika 24. Prostorne razdiobe SPI-a na vremenskim skalam od 1, 3, 6, 12, 24 i 48 mjeseci za KOLOVOZ 2019.
Tijekom ljeta na 3-mjesečnoj vremenskoj skali prevladavali su ekstremno sušni uvjeti jedino u Pargu (SPI3; -2.07). Vrlo sušni uvjeti zabilježeni su na Zavižanu (SPI3; -1.58) a umjereno sušni uvjeti u Bjelovaru, Hvaru i Senju (SPI3; -1.12, -1.43 i -1.18). Oborinski uvjeti u granicama normale bili su u Daruvaru, Dubrovniku, Gospiću, Karlovcu, Kninu, Križevcima, Malom Lošinju, Ogulinu, Osijeku, Pazinu, Rijeci, Sisku, Slavonskom Brodu, Split Marjanu, Šibeniku, Varaždinu, Zadru i Zagreb Maksimiru (SPI3; -0.49, -0.42, -0.24, -0.83, -0.61, -0.51, 0.28, -0.65, 0.77, -0.72, -0.70, -0.37, -0.92, 0.65, -0.61 i -0.82).

U proljeću i ljeto su oborinski uvjeti na 6-mjesečnoj vremenskoj skali bili unutar granica normale u Bjelovaru, Daruvaru, Dubrovniku, Gospiću, Karlovcu, Kninu, Križevcima, Hvaru, Karlovcu, Kninu, Križevcima, Ogulinu, Pargu, Rijeci, Senju, Slavonskom Brodu, Split Marjanu, Šibeniku, Zadru i Zagreb Maksimiru (SPI6; 0.16, 0.92, 0.56, 0.53, 0.53, 0.60, -0.57, 0.37, 0.97, -0.14, 0.20, 0.18, 0.74, 0.39, -0.34, 0.86, 0.11 i 0.28). Umjereno kišni uvjeti prevladavali su u Osijeku, Pazinu, Sisku i Varaždinu (SPI6; 1.47, 1.12, 1.07 i 1.33). Vrlo kišni uvjeti zabilježeni su jedino u Malom Lošinju (SPI6; 1.66).

Na 12-mjesečnoj vremenskoj skali umjereno sušni uvjeti bili su u Bjelovaru i Zavižanu (SPI12; -1.01 i -1.16). Oborinski uvjeti u granicama normale zabilježeni su u Daruvaru, Dubrovniku, Gospiću, Karlovcu, Kninu, Križevcima, Ogulinu, Pargu, Rijeci, Senju, Slavonskom Brodu, Split Marjanu, Šibeniku, Varaždinu, Zadru i Zagreb Maksimiru (SPI12; -0.23, 0.42, -0.86, 0.51, -0.79, -0.14, -0.91, 0.55, -0.57, -0.21, -0.77, 0.88, -0.39, -0.54, -0.10, -0.78, 0.06, -0.80, 0.48, -0.79 i -0.46).

Oborinski uvjeti na 24-mjesečnoj vremenskoj skali bili su unutar granica normale u Bjelovaru, Daruvaru, Dubrovniku, Karlovcu, Kninu, Križevcima, Ogulinu, Osijeku, Pargu, Rijeci, Senju, Slavonskom Brodu, Split Marjanu, Šibeniku, Zagreb Maksimir i na Zavižanu (SPI24; 0.46, 0.73, 0.29, 0.76, 0.91, 0.77, 0.69, 0.68, 0.65, 0.51, 0.63, 0.67, 0.00, 0.30, 0.88 i 0.19). Umjereno kišni uvjeti su prevladavali u Hvaru i Zadru (SPI24; 1.12 i 1.35), vrlo kišni uvjeti u Gospiću, Pazinu i Varaždinu (SPI24; 1.77, 1.94 i 1.70), a ekstremno kišni uvjeti u Malom Lošinju i Sisku (SPI24; 2.33 i 2.10).

Oborinski uvjeti na 48-mjesečnoj vremenskoj skali su bili unutar granica normale u Bjelovaru, Daruvaru, Dubrovniku, Gospiću, Hvaru, Karlovcu, Kninu, Križevcima, Ogulinu, Osijeku, Pargu, Rijeci, Senju, Slavonskom Brodu, Split Marjanu, Šibeniku, Varaždinu, Zadru, Zagreb Maksimiru i na Zavižanu (SPI48; -0.41, 0.27, -0.62, 0.67, -0.31, 0.40, 0.03, 0.20, 0.29, 0.56, -0.23, 0.67, 0.46, 0.71, -0.66, 0.34, 0.72, 0.53, 0.14 i 0.00). Umjereno kišni uvjeti su prevladavali u Pazinu i Sisku (SPI48; 1.06 i 1.40), a vrlo kišni uvjeti u Malom Lošinju (SPI48; 1.50).

Klasifikacijska skala za vrijednosti SPI

<table>
<thead>
<tr>
<th>Vrijednosti SPI</th>
<th>Klase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0 i više</td>
<td>ekstremno kišno</td>
</tr>
<tr>
<td>1.5 − 1.99</td>
<td>vrlo kišno</td>
</tr>
<tr>
<td>1.0 − 1.49</td>
<td>umjereno kišno</td>
</tr>
<tr>
<td>-0.99 − 0.99</td>
<td>u granicama normale</td>
</tr>
<tr>
<td>-1.0 − -1.49</td>
<td>umjereno suho</td>
</tr>
<tr>
<td>-1.5 − -1.99</td>
<td>vrlo suho</td>
</tr>
<tr>
<td>-2.0 i više</td>
<td>ekstremno suho</td>
</tr>
</tbody>
</table>

Temperatura mora

Željka Pogačić, mag. phys.- geophys.

Na šest lokacija s dugogodišnjim kontinuiranim nizom podataka, od ukupno 14 duž istočne obale Jadranu u sklopu mreže postaja za klasično mjerenje površinske temperature mora Državnog hidrometeorološkog zavoda, obavljena je statistička analiza i obrada podataka za kolovoz 2019. godine. Analizirane postaje Senj i Rab nalaze se na sjevernom, a postaje Šibenik, Split – Marjan, Hvar i Komiža na srednjem Jadranu. Važno je napomenuti kako su Rab, Hvar i Komiža otočne, a preostale tri, obalne postaje.

Tablica 7: Prosječne površinske temperature mora u klimatološkom razdoblju (T—KLIM, sred) u usporedbi sa prosječnim temperaturem u KOLOVOZU 2019. godine (T—2019, sred) i (T—2019, sred - T—KLIM, sred) njihove razlike.

<table>
<thead>
<tr>
<th>°C</th>
<th>Senj</th>
<th>Rab</th>
<th>Split – Marjan</th>
<th>Hvar</th>
<th>Šibenik*</th>
<th>Komiža**</th>
</tr>
</thead>
<tbody>
<tr>
<td>T—2019, sred</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,1</td>
<td>25,9</td>
<td>25,5</td>
<td>25,4</td>
<td>24,9</td>
<td>25,6</td>
<td></td>
</tr>
<tr>
<td>T—KLIM, sred</td>
<td>20,6</td>
<td>24,2</td>
<td>23,9</td>
<td>23,8</td>
<td>24,7</td>
<td></td>
</tr>
<tr>
<td>T—2019, sred - T—KLIM, sred</td>
<td>1,5</td>
<td>1,7</td>
<td>1,7</td>
<td>1,6</td>
<td>1,5</td>
<td>0,9</td>
</tr>
</tbody>
</table>

* za mjernu postaju Šibenik, promatrano klimatološko razdoblje 1996. - 2010.
liziranim postajama sjevernog i srednjeg Jadranca, površinska temperatura mora je u prosjeku bila viša od klimatološkog srednjaka u „novoj klimi“ 1981. – 2010. Pozitivno odstupanje od odgovarajućeg prosjeka je na pet od ukupno šest postaja više od jednog Celzijevog stupnja (tablica 7). Budući da je promatrano dugogodišnje razdoblje u Komiži i Šibeniku 10, odnosno 15 godina kraće od ostalih, moguće je da bi s pravom klimatologijom dobivena razlika prikazana u tablici 7 bila i veća. Ovakva analiza upućuje na generalno topliji površinski sloj mora u bližoj klimi.

Površinska temperatura mora je u kolovozu 2019. na sjevernom Jadranu bila 0.3 do 1.0°C viša nego na srednjem Jadranu, što je u skladu s klimatološkim podacima. Izuzetak čini postaja Senj zbog izrazitog utjecaja bure i Komiža sa specifičnom klimom i kratkim nižom za usporedbu.
Najviša srednja dnevna temperatura mora u kolovozu 2019. na svim postajama (vidi tablicu 8) premašila je granicu dvije standardne devijacije. Na postajama Rab, Šibenik, Split i Hvar su zabilježene samo pozitivne anomalije srednje dnevne temperature površinskog sloja od klimatološkog srednjaka i kretale se od 0.1°C (Šibenik i Split-Marjan) do 3.6°C (Šibenik). Negativne anomalije najizraženije bile su u Senju, -2.7°C, dok je u Komiži početkom kolovoza (5. i 8. kolovoza) površinska temperatura mora neznatno odstupala od srednjaka, približno -0.2°C. Unatoč velikim pozitivnim anomalijama, u kolovozu 2019. nije bilo rekordnih vrijednosti površinskih temperatura mora (tablica 9).

Jedino je na postaji Split terminski maksimum izmjeren jedan dan prije najviše srednje dnevne temperature mora.

Nije bilo većih oscilacija u kretanju vodostaja, a i sama vodnost rijeka bila je ispod prosječnih vrijednosti za kolovoz.

Na Savi je tijekom kolovoza bilo mirno. Zabilježene oscilacije vodostaja odvijale su se unutar granica niskih voda. Najviši vodostaji zabilježeni su sredinom prvih, a najniži sredinom zadnje dekade mjeseca. Duž cijelog toka zabilježena je nešto manja vodnost, tako da se deficit otjecanja kretao između 10 i 20%.

Na Dravi vodostaji su gotovo čitavog mjeseca imali neznatne oscilacije s trendom laganog opadanja. Oscilacije su se odvijale unutar granica niskih voda, a zabilježena je ispodprosječna vodnost. Deficit otjecanja kretao se između 30 i 35%. Na Dunavu je još početkom mjeseca zabilježen lagani porast vodostaja, ali već sredinom prve dekade mjeseca vodostaj je počeo opadati. Manje oscilacije zabilježene su u zadnjoj dekadi mjeseca. Kretanje vodostaja bilo je unutar raspona srednje niskih vodostaja.

Tijekom kolovoza na Kupi je bilo mirno. Oscilacije vodostaja koje su se pojavile tijekom mjeseca odvijale su se unutar granica niskih voda. Malovodnost Kupe bila je izraženija u gornjim dijelovima tokov dok je u doljinama na dolinama zabilježen manji deficit otjecanja od 30%, dok je u donjem dijelu deficit otjecanja bio manji i iznosio oko 10%.

HIDROLOŠKE PRILIKE

Površinske vode

Tomislava Bošnjak, inž.

Na analiziranim vodotocima u Hrvatskoj u kolovozu nisu zabilježena značajnija hidrološka događanja.

Legenda: Q_{min}, Q_{maks} apsolutno minimalni odnosno maksimalni protok u mjesecu (satna vrijednost),
Q_{sred} srednji dnevni protok (srednja vrijednost iz dva mjerenja, 06 i 18 sati).

Slika 28. Minimalni (Q_{min}), srednji (Q_{sred}) i maksimalni (Q_{maks}) protok u KOLOVOZU 2019. s primjerom pripadajućih karakterističnih vrijednosti ($nQ_{\text{min}}, sQ_{\text{min}}, vQ_{\text{min}}, nQ_{\text{sred}}, sQ_{\text{sred}}, vQ_{\text{sred}}, nQ_{\text{maks}}, sQ_{\text{maks}}, vQ_{\text{maks}}$) za razdoblje 1961. – 2015.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q_{\text{min}}</td>
<td>nQ_{\text{min}}</td>
<td>sQ_{\text{min}}</td>
</tr>
<tr>
<td></td>
<td>m^3/s</td>
<td>dan</td>
<td>m^3/s</td>
</tr>
<tr>
<td>Sava</td>
<td>Zagreb</td>
<td>82,3</td>
<td>23.08.</td>
</tr>
<tr>
<td></td>
<td>Jasenovac</td>
<td>198</td>
<td>25.08.</td>
</tr>
<tr>
<td></td>
<td>Slavonski Brod</td>
<td>248</td>
<td>26.08.</td>
</tr>
<tr>
<td></td>
<td>Županja</td>
<td>307</td>
<td>23.08.</td>
</tr>
<tr>
<td>Kupa</td>
<td>Kamanje</td>
<td>9,13</td>
<td>29.08.</td>
</tr>
<tr>
<td></td>
<td>Jamnička Kiselica</td>
<td>36,0</td>
<td>24.08.</td>
</tr>
<tr>
<td>Mura</td>
<td>Mursko Središće</td>
<td>61,0</td>
<td>24.08.</td>
</tr>
<tr>
<td>Drava</td>
<td>Botovo</td>
<td>112</td>
<td>30.08.</td>
</tr>
<tr>
<td></td>
<td>Donji Miholjac</td>
<td>276</td>
<td>20.08.</td>
</tr>
</tbody>
</table>

	Q_{\text{sred}}	nQ_{\text{sred}}	sQ_{\text{sred}}	vQ_{\text{sred}}
	142	56,5	175	421
	285	117	325	1000
	336	167	428	1307
	392	194	479	1527
	19,7	6,89	27,4	95,7
	65,7	21,9	73,8	257
	89,8	55,1	179	462
	344	235	521	1237
	380	256	542	1228

	Q_{\text{maks}}	nQ_{\text{maks}}	sQ_{\text{maks}}	vQ_{\text{maks}}	
	468	03.08.	87,3	542	1519
	412	06.08.	124	627	2110
	457	06.08.	195	758	2578
	514	04.08.	240	812	3015
	106	03.08.	9,99	187	934
	166	04.08.	33,7	238	748
	161	25.08.	116	392	1196
	632	03.08.	527	930	2587
	598	01.08.	426	838	2088

Srednji protoci bili su manji od prosječnih protoka u kolovozu u razdoblju 1961. – 2015.

Podzemne vode

Ivan Bertović, prof.

Mjerne postaje zagrebačkog aluvijalnog područja (Borovje i Mičevec) su tijekom većeg dijela kolovozja bilježile slabu dinamiku razine podzemne vode. Mjesec je započeo četverodnevnim porastom razine podzemne vode koji je rezultirao postizanjem mjesečnog maksimalnog vodostaja na obje promatrane postaje. Zatim je prevladavalo kontinuirano opadanje vodostaja koje je bilo prekinuto u trećoj dekadi mješeca trodnevnim porastom razine podzemne vode vrlo malog intenziteta. Objekti su postaje evidentirale minimalne mjesečne vodostaje u trećoj dekadi mjeseca neposredno prije navedenog trodnevnog porasta razine podzemne vode. Razlike između ekstremnih mjesečnih vrijednosti su iznosile 38 cm za Borovje i 33 cm za Mičevec. Vrijednosti minimalnih, srednjih i maksimalnih mjesečnih vodostaja obje postaje su bile niže od prosječnih vrijednosti u kolovozu za razdoblje obrade podataka od 1990. – 2014. godine.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NV</td>
<td>NV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m.n.m. dan m.n.m. m.n.m. m.n.m. m.n.m.</td>
<td></td>
</tr>
<tr>
<td>SAVA</td>
<td>Zagreb Borovje</td>
<td>103,65</td>
<td>24.08.</td>
</tr>
<tr>
<td></td>
<td>Zagreb Mičevac</td>
<td>101,02</td>
<td>24.08.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV</td>
<td>SV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td>Zagreb Borovje</td>
<td>103,80</td>
<td>102,90</td>
</tr>
<tr>
<td></td>
<td>Zagreb Mičevac</td>
<td>101,16</td>
<td>100,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VV</td>
<td>VV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td>Zagreb Borovje</td>
<td>103,89</td>
<td>05.08.</td>
</tr>
<tr>
<td></td>
<td>Zagreb Mičevac</td>
<td>101,33</td>
<td>05.08.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NV</td>
<td>NV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>m.n.m. dan m.n.m. m.n.m. m.n.m. m.n.m.</td>
<td></td>
</tr>
<tr>
<td>DRAVA</td>
<td>Repaš</td>
<td>115,31</td>
<td>31.08.</td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>115,77</td>
<td>30.08.</td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>103,97</td>
<td>24.08.</td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>96,38</td>
<td>31.08.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SV</td>
<td>SV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td>Repaš</td>
<td>115,42</td>
<td>31.08.</td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>115,88</td>
<td>30.08.</td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>104,12</td>
<td>30.08.</td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>96,59</td>
<td>30.08.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VV</td>
<td>VV<sub>min</sub></td>
</tr>
<tr>
<td></td>
<td>Repaš</td>
<td>115,55</td>
<td>01.08.</td>
</tr>
<tr>
<td></td>
<td>Gornja Šuma</td>
<td>115,98</td>
<td>01.08.</td>
</tr>
<tr>
<td></td>
<td>Gornji Miholjac</td>
<td>104,30</td>
<td>02.08.</td>
</tr>
<tr>
<td></td>
<td>Čađavica</td>
<td>96,76</td>
<td>03.08.</td>
</tr>
</tbody>
</table>

m.n.m. – metara nad morem.
NV, SV, VV – minimalni, srednji i maksimalni vodostaj podzemne vode u mjesecu.
NV_{min}, sred, max – najmanji, srednji i najviši minimalni vodostaj podzemne vode za pripadajući mjesec u razdoblju.
SV_{min}, sred, max – najmanji, srednji i najviši srednji vodostaj podzemne vode za pripadajući mjesec u razdoblju.
VV_{min}, sred, max – najmanji, srednji i najviši maksimalni vodostaj podzemne vode za pripadajući mjesec u razdoblju.

Područje Postaja
Repaš 24 cm, Gornja Šuma 21 cm, Gornji Miholjac 35 cm i Čađavica 38 cm. Vrijednosti minimalnih, srednjih i maksimalnih mjesečnih vodostaja na mornjama u razdoblju 1988. – 2014 godine.
EKOLOŠKE PRILIKE

Meteorološke karakteristike

Domagoj Mihajlović, dipl. inž.

Visine sloja miješanja tijekom kolovozoa 2019. na postajama Zagreb Maksimir i Zadar u terminima 00 i 12 UTC prikazane su na slici 30. Na osnovi proračuna vidljivo je da je tijekom noći visina sloja miješanja u Zagrebu i Zadru bila najveća 22. kolovoza i 23. kolovoza (699 m i 248 m). U Zagrebu i Zadru najveća visina sloja miješanja u terminu 12 UTC proračunata je 31. kolovoza i 30. kolovoza (2265 m i 3762 m). Prosječna mjesečna visina sloja miješanja u terminu 00 UTC u Zagrebu iznosila je 71 m, a u Zadru 30 m. U terminu 12 UTC prosječna vrijednost visine sloja miješanja bila je 1345 m (Zagreb) i 1928 m (Zadar).

Tablica 13. Apsolutni (N) i relativni (%) broj dana sa slojem temperature inverzije prema visinskim mjerenjima u Zagrebu i Zadru za KOLOVOZ 2019. u terminima 00 UTC (NOĆ) i 12 UTC (DAN).

ZAGREB

<table>
<thead>
<tr>
<th>Sloj inverzije</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>ne postoji</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>prizemna</td>
<td>28</td>
<td>56</td>
</tr>
<tr>
<td>podignuta</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>visinska</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Tablica 14. Apsolutni (N) i relativni (%) broj dana sa pojedinom kategorijom stabilnosti (modificirana Pasquillova metoda) u prizemnom sloju atmosfere u Zagrebu i Zadru za KOLOVOZ 2019. u terminima 00 UTC (NOĆ) i 12 UTC (DAN).

ZAGREB

<table>
<thead>
<tr>
<th>Sloj inverzije</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – jako labilno</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>B – umjereno labilno</td>
<td>0 0</td>
<td>18 58</td>
</tr>
<tr>
<td>C malo labilno</td>
<td>0 0</td>
<td>11 35</td>
</tr>
<tr>
<td>D neutralno</td>
<td>9</td>
<td>29 2</td>
</tr>
<tr>
<td>E malo stabilno</td>
<td>2 6</td>
<td>0 0</td>
</tr>
<tr>
<td>F umjereno stabilno</td>
<td>17 55</td>
<td>0 0</td>
</tr>
<tr>
<td>G jako stabilno</td>
<td>3 10</td>
<td>0 0</td>
</tr>
</tbody>
</table>

ZADAR

<table>
<thead>
<tr>
<th>Sloj inverzije</th>
<th>noć</th>
<th>dan</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – jako labilno</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>B – umjereno labilno</td>
<td>0 0</td>
<td>13 43</td>
</tr>
<tr>
<td>C malo labilno</td>
<td>0 0</td>
<td>5 17</td>
</tr>
<tr>
<td>D neutralno</td>
<td>5</td>
<td>17 0</td>
</tr>
<tr>
<td>E malo stabilno</td>
<td>6</td>
<td>20 0</td>
</tr>
<tr>
<td>F umjereno stabilno</td>
<td>14 47</td>
<td>0 0</td>
</tr>
<tr>
<td>G jako stabilno</td>
<td>5</td>
<td>16 0</td>
</tr>
</tbody>
</table>

Slika 30. Visina sloja miješanja na postajama Zagreb Maksimir i Zadar u KOLOVOZU 2019. godine u terminima 00 UTC i 12 UTC

<table>
<thead>
<tr>
<th>Postaja</th>
<th>RR</th>
<th>RR/RRph</th>
<th>pH</th>
<th>pHmin-pHmax</th>
<th>CI</th>
<th>NO₂⁻-N</th>
<th>SO₄²⁻-S</th>
<th>Na⁺</th>
<th>NH₄⁺-N</th>
<th>K⁺</th>
<th>Mg²⁺</th>
<th>Ca²⁺</th>
<th>SO₃²⁻-S</th>
<th>NO₃⁻-N</th>
<th>udio kiselih kis.</th>
<th>mg/dm³</th>
<th>kg/ha (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puntijarka</td>
<td>42,2</td>
<td>96 / 99</td>
<td>6,26</td>
<td>6,14 - 6,68</td>
<td>0,284</td>
<td>0,267</td>
<td>0,348</td>
<td>0,176</td>
<td>0,644</td>
<td>0,248</td>
<td>0,092</td>
<td>0,877</td>
<td>0,147</td>
<td>0,112</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krapina</td>
<td>57,7</td>
<td>99 / 99</td>
<td>5,84</td>
<td>5,40 - 6,39</td>
<td>0,205</td>
<td>0,281</td>
<td>0,385</td>
<td>0,245</td>
<td>0,409</td>
<td>0,333</td>
<td>0,154</td>
<td>0,840</td>
<td>0,222</td>
<td>0,162</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bilogora</td>
<td>24,0</td>
<td>97 / 97</td>
<td>6,07</td>
<td>5,94 - 6,74</td>
<td>0,267</td>
<td>0,335</td>
<td>0,419</td>
<td>0,147</td>
<td>0,469</td>
<td>0,170</td>
<td>0,092</td>
<td>1,010</td>
<td>0,101</td>
<td>0,080</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slav. Brod</td>
<td>39,7</td>
<td>99 / 99</td>
<td>5,46</td>
<td>4,81 - 7,11</td>
<td>0,370</td>
<td>0,274</td>
<td>0,618</td>
<td>0,381</td>
<td>0,333</td>
<td>0,207</td>
<td>0,236</td>
<td>1,004</td>
<td>0,245</td>
<td>0,109</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karlovac</td>
<td>81,5</td>
<td>100 / 100</td>
<td>5,79</td>
<td>5,50 - 6,34</td>
<td>0,147</td>
<td>0,210</td>
<td>0,260</td>
<td>0,065</td>
<td>0,532</td>
<td>0,185</td>
<td>0,049</td>
<td>0,423</td>
<td>0,212</td>
<td>0,171</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ogulin</td>
<td>54,6</td>
<td>99 / 99</td>
<td>5,82</td>
<td>5,70 - 6,04</td>
<td>0,212</td>
<td>0,199</td>
<td>0,223</td>
<td>0,122</td>
<td>0,270</td>
<td>0,116</td>
<td>0,075</td>
<td>0,664</td>
<td>0,122</td>
<td>0,109</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zavižan</td>
<td>33,9</td>
<td>99 / 99</td>
<td>6,25</td>
<td>6,22 - 6,38</td>
<td>0,482</td>
<td>0,328</td>
<td>0,223</td>
<td>0,223</td>
<td>0,254</td>
<td>0,203</td>
<td>0,077</td>
<td>0,997</td>
<td>1,751</td>
<td>0,076</td>
<td>0,111</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rijeka</td>
<td>52,9</td>
<td>100 / 100</td>
<td>6,12</td>
<td>6,10 - 6,32</td>
<td>0,761</td>
<td>0,338</td>
<td>0,430</td>
<td>0,423</td>
<td>0,354</td>
<td>0,093</td>
<td>0,122</td>
<td>1,453</td>
<td>0,228</td>
<td>0,179</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zadar</td>
<td>16,2</td>
<td>98 / 98</td>
<td>6,72</td>
<td>6,69 - 7,52</td>
<td>38,011</td>
<td>0,540</td>
<td>0,388</td>
<td>21,272</td>
<td>0,374</td>
<td>0,907</td>
<td>2,483</td>
<td>4,975</td>
<td>0,063</td>
<td>0,088</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>6,7</td>
<td>99 / 99</td>
<td>6,39</td>
<td>6,32 - 7,28</td>
<td>2,616</td>
<td>0,967</td>
<td>1,479</td>
<td>1,875</td>
<td>0,592</td>
<td>0,611</td>
<td>0,655</td>
<td>6,005</td>
<td>0,099</td>
<td>0,065</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Slika 31. Srednja mjesečna pH vrijednost na promatranim postajama i srednje mjesečne koncentracije sumpora iz sulfata u KOLOVOZU 2019. godine (crvena linija označava granicu kiselosti oborine pH < 5,6)
pH vrijednost takve oborine pada, odnosno oborina postaje kisela. Mokrim taloženjem svih spojeva opterećuju sustav.

Uzorkovanje oborine provodi se u mreži postaja DHMZ-a otvorenim uzorkivačem (bulk uzorkivač – osim na postaji Slavonski Brod gdje je postavljen automatski uzorkivač). U tablici 15 za kolovoz prikazane su količina oborine, udio oborine analiziran na glavne ione i pH, vrijednosti koncentracija glavnih iona, ukupno mjesečno taloženje sumpora iz sulfata i dušika iz nitrata te udio kiselnih kiša s obzirom na analiziranu količinu oborine.

Ukupna mjesečna količina oborine za kolovoz bila je niža od one u srpnju, maksimum je zabilježen u Karlovcu i iznosi 81.5 mm, a minimum je zabilježen u Dubrovniku i iznosi 6.7 mm. Kisela oborina u kolovozu zabilježena je samo na postajama u Krapini, Slavonskom Brodu i Karlovcu. U kolovozu je pH vrijednost određena u 99% oborine, a koncentracija glavnih iona je određena u 98% oborine.

Maksimalna mjesečna koncentracija sumpora iz sulfata od 1.48 mg S/L i maksimalna mjesečna koncentracija dušika iz nitrata od 0.97 mg N/L zabilježene su u Dubrovniku. Minimalna mjesečna vrijednost sumpora iz sulfata od 0.22 mg S/L zabilježena je u Zavižanu, a minimalna mjesečna vrijednost dušika iz nitrata od 0.20 mg N/L zabilježena u Ogulinu. Srednje mjesečne vrijednosti kiselnih kompenenata prikazane su na slici 32.

U kolovozu je ukupno mjesečno taloženje sumpora iz sulfata i dušika iz nitrata bilo manje u odnosu na ono u srpnju. Na grafu prikazanom na slici 33 može se vidjeti da je maksimum ukupnog mjesečnog taloženja za sumpor u obliku sulfata od 0.25 mg S/L zabilježen u Slavonskom Brodu, a za dušik u obliku nitrata od 0.18 mg N/L zabilježen u Rijeci. Minimalna vrijednost ukupnog mjesečnog taloženja sumpora iz sulfata od 0.06 mg S/L zabilježena je u Zadru, a dušika iz nitrata od 0.07 mg N/L zabilježena je u Dubrovniku.

BIOMETEOROLOŠKE PRILIKE

mr. sc. Lidija Cvitan

Slika 34. Osjet ugodnosti prema fiziološkoj ekvivalentnoj temperaturi (PET) za Zagreb, Slavonski Brod, Gospić, Rijeku i Split-Marjan za KOLOVOZ 2019. godine
U prvoj dekadi u Gospiću su prevladavala ugodno svježa jutra, u Slavonskom Brodu ugodno svježa i ugodna topla, u Zagrebu ugodna i ugodno topla, a na Jadranu ugodno topla, uz poneko topolo jutro. Popodnjeva su većinom bile toplja ili vruća, a dva ugodno topla popodnjeva su zabilježena u Gospiću i jedno u Zagrebu. Večeri u Gospiću su uglavnom bile ugodno svježa, a samo dvije svježe. Jedna svježa večer pojavila se i u Slavonskom Brodu, a ostale su bile ugodno svježe ili ugodne, kao i večeri u Zagrebu i Rijeci. U Splitu su večeri bile ugodne ili ugodno tople. U prvom dekadi osjet ugođe bio je u granicama normale u sva tri dnevna termina u Gospiću i Rijeci, a toplije od normale bile su večeri u Zagrebu, jutra u Splitu te jutra i večeri u Slavonskom Brodu.

U drugoj dekadi su jutra bila hladnija nego u prvoj dekadi i to znatnije u unutrašnjosti Hrvatske nego na Jadranu. Dva hladna jutra zabilježena su u Gospiću, a po tri svježa u Gospiću i Slavonskom Brodu. U Zagrebu su najhladnija bile tri ugodno svježa jutra, a takvo je bilo i jedno u Rijeci i Splitu. Popodnjeva su bile znatnije hladnija nego u prvoj dekadi samo u Gospiću, gdje su se kretala u rasponu od ugodno svježeg do vrlo vrućeg. U rasponu od ugodno toplog do vrlo vrućeg bila su podnjeva u Zagrebu i Slavonskom Brodu, a od toplog do vrlo vrućeg u Rijeci i Splitu. U drugoj dekadi toplinski osjet ugođe bio je najvećim dijelom u granicama normale. U granicama normale bio je u Slavonskom Brodu, Gospiću i Rijeci u svu tri termina, a toplije od normale bilo je u svu tri termina u Splitu te u večernjem u Zagrebu.

U trećoj dekadi je u usporedbi s drugom zatoplilo. Najhladnija su bile tri svježa jutra u Gospiću, gdje su prevladavala ugodno svježa jutra. U Slavonskom Brodu su prevladala ugodna, a u Zagrebu, Rijeci i Splitu ugodno topla jutra. Popodnjeva su ugodna bile toplja ili vruća, uz poneko ugodno topljo u unutrašnjosti Hrvatske te jedno vrlo vruće popodne u Rijeci. Jedna svježa večer bila je ujedno najhladnija u Gospiću, gdje su prevladavala ugodno svježe večeri kao i u Slavonskom Brodu. Ugodne večeri prevladavale su u Zagrebu i Rijeci, a ugodna tople u Splitu. Treća dekada kolovoz najviše je odstupala od prosjeka. U sva tri termina bilo je toplije od normale u Gospiću, a znatno toplije od normale u Slavonskom Brodu. Toplja od normale bila su jutra i podnjeva u Rijeci te podnjeva u Zagrebu, a znatno toplija od normale jutra u Zagrebu, podnjeva u Splitu i večeri u Rijeci. Iznaradno toplija od normale bila su jutra i večeri u Splitu te večeri Zagrebu.

SUNČEVO ZRAČENJE

Marinko Marelja, mag. inž. min.

Globalna ozračenost

Najmanji iznosi globalne ozračenosti u kolovozu izmjereni su u Pargu (58016 J/cm²) i Zagrebu (58664 J/cm²). U Križevcima, Osijeku i Gospiću vrijednosti su bile za oko 7000 J/cm² veće. Na jadranskim postajama te su vrijednosti bile iznad 73000 J/cm², dok je najviše globalne ozračenosti izmjereno u Dubrovniku u iznosu od 76919.7 J/cm². Na većini postaja najviše globalne ozračenosti bilo je u prvoj dekadi. Srednje dnevne vrijednosti bile su u rasponu od 1871.5 J/cm² koliko je iz mereno u Pargu do 2481.3 J/cm² izmjerene u Dubrovniku. Najmanji dnevni maksimum izmjen je u Zagrebu (2452.7 J/cm²), a najveći u Zadru (2849.4 J/cm²).

Difuzna ozračenost

Na splitskom je području izmjereno najmanje difuzne ozračenosti u iznosu od 14651,1 J/cm². Slijede ga Dubrovnik, Osijek i Zadar (15000-16400 J/cm²), Rijeka

Slika 35: Ukupna globalna i difuzna ozračenost za KOLOVOZ 2018/19 godine (podaci za 2018 godinu preuzeti iz biltena za srpanj 2018 godine.)
Slika 36. Dnevne globalne i difuzne ozračenosti u KOLOVOZU 2019. godine
Najveći iznos difuzne ozračenosti izmjeren je u Gospiću (19099.8 J/cm²). Na svim postajama najviše difuzne ozračenosti izmjereno je u trećoj dekadi. Srednje dnevne vrijednosti bile su u rasponu od splitskih 472.6 J/cm² do 616.1 J/cm² dok je najveći izmjereno u Zadru (1106.8 J/cm²).

Tablica 16. Mjesečna statistika globalne i difuzne (donji dio tablice) ozračenosti (J/cm²) – KOLOVOZ, 2019.

<table>
<thead>
<tr>
<th>Postaja</th>
<th>SRED</th>
<th>MAKS</th>
<th>MIN</th>
<th>SUMA</th>
<th>SD1</th>
<th>SD2</th>
<th>SD3</th>
<th>NP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagreb-Maksimir</td>
<td>1892.4</td>
<td>2452.7</td>
<td>1005.7</td>
<td>58664</td>
<td>20528.9</td>
<td>19650.8</td>
<td>18484.3</td>
<td>0</td>
</tr>
<tr>
<td>Križevci</td>
<td>2110.3</td>
<td>2627.1</td>
<td>1162.8</td>
<td>65420.6</td>
<td>22880.7</td>
<td>21601.4</td>
<td>20938.5</td>
<td>0</td>
</tr>
<tr>
<td>Osijek</td>
<td>2083.8</td>
<td>2564.9</td>
<td>699.1</td>
<td>64599.2</td>
<td>22338.1</td>
<td>21138.1</td>
<td>21123.0</td>
<td>0</td>
</tr>
<tr>
<td>Parg</td>
<td>1871.5</td>
<td>2608.4</td>
<td>342</td>
<td>58016</td>
<td>22231.8</td>
<td>19536.8</td>
<td>16247.4</td>
<td>0</td>
</tr>
<tr>
<td>Rijeka</td>
<td>2395.7</td>
<td>2783.6</td>
<td>1638.5</td>
<td>74267.2</td>
<td>24868.6</td>
<td>25249.3</td>
<td>24149.3</td>
<td>0</td>
</tr>
<tr>
<td>Gospić</td>
<td>2112.9</td>
<td>2768.2</td>
<td>941.2</td>
<td>65499.4</td>
<td>23933.6</td>
<td>22071.7</td>
<td>19494.1</td>
<td>2</td>
</tr>
<tr>
<td>Zadar</td>
<td>2422.2</td>
<td>2849.4</td>
<td>1600.3</td>
<td>75089.6</td>
<td>25532.1</td>
<td>25391.2</td>
<td>24166.3</td>
<td>0</td>
</tr>
<tr>
<td>Split</td>
<td>2361.3</td>
<td>2703.3</td>
<td>1747</td>
<td>73199.3</td>
<td>25000.6</td>
<td>24436.6</td>
<td>23762.1</td>
<td>0</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>2643.9</td>
<td>3078.4</td>
<td>385.7</td>
<td>81961.4</td>
<td>27357.5</td>
<td>27815</td>
<td>26788.9</td>
<td>7</td>
</tr>
</tbody>
</table>

SRED – mjesečna srednja dnevna ozračenost, SD1 – ozračenost prve, druge, odnosno treće dekade u mjesecu, MAKS – mjesečni maksimum dnevne ozračenosti, SD2 – ozračenost prve, druge, odnosno treće dekade u mjesecu, MIN – mjesečni minimum dnevne ozračenosti, SD3 – ozračenost prve, druge, odnosno treće dekade u mjesecu, SUMA – mjesečna ozračenost, NP – nedostajući podaci u satima.

Tablica 17. Mjesečna statistika trajanja sijanja Sunca (sati) – KOLOVOZ, 2019.

<table>
<thead>
<tr>
<th>Postaja</th>
<th>SRED</th>
<th>MAKS</th>
<th>SUMA</th>
<th>SD1</th>
<th>SD2</th>
<th>SD3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagreb-Maksimir</td>
<td>8.4</td>
<td>12.6</td>
<td>259.8</td>
<td>92.9</td>
<td>86.6</td>
<td>80.3</td>
</tr>
<tr>
<td>Križevci</td>
<td>8.8</td>
<td>12.6</td>
<td>274.0</td>
<td>94.4</td>
<td>91.9</td>
<td>87.7</td>
</tr>
<tr>
<td>Osijek</td>
<td>10.0</td>
<td>12.9</td>
<td>310.0</td>
<td>103.9</td>
<td>102.2</td>
<td>103.9</td>
</tr>
<tr>
<td>Parg</td>
<td>8.0</td>
<td>12.8</td>
<td>247.3</td>
<td>100.8</td>
<td>89.7</td>
<td>56.8</td>
</tr>
<tr>
<td>Rijeka</td>
<td>10.4</td>
<td>12.9</td>
<td>322.1</td>
<td>110.5</td>
<td>111.5</td>
<td>100.1</td>
</tr>
<tr>
<td>Gospić</td>
<td>8.9</td>
<td>13.1</td>
<td>277.3</td>
<td>105.4</td>
<td>96.4</td>
<td>75.5</td>
</tr>
<tr>
<td>Zadar</td>
<td>10.7</td>
<td>13.3</td>
<td>333.0</td>
<td>112.3</td>
<td>114.1</td>
<td>106.6</td>
</tr>
<tr>
<td>Split</td>
<td>11.1</td>
<td>12.9</td>
<td>345.4</td>
<td>118.1</td>
<td>117.6</td>
<td>109.7</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>11.4</td>
<td>12.7</td>
<td>352.8</td>
<td>119.7</td>
<td>115.9</td>
<td>117.2</td>
</tr>
</tbody>
</table>

SRED – mjesečna srednja dnevna ozračenost, SD1 – ozračenost prve, druge, odnosno treće dekade u mjesecu, MAKS – mjesečni maksimum dnevne ozračenosti, SD2 – ozračenost prve, druge, odnosno treće dekade u mjesecu, MIN – mjesečni minimum dnevne ozračenosti, SD3 – ozračenost prve, druge, odnosno treće dekade u mjesecu, SUMA – mjesečna ozračenost.

Trajanje sijanja Sunca

Najmanje trajanja sijanja Sunca u kolovozu izmjereno je u Pargu (247.3 h), a slijede ga Zagreb (259.8 h), Križevci (274 h) i Gospić (277.3 h). Na ostalim postajama vrijednosti su bile iznad 300 sati, a najviše u Dubrovniku (352.8 h). Srednje dnevne vrijednosti na kontinentalnim postajama su bile u rasponu od 8.4 do 10 sati, dok su

(17045.7 J/cm²) i Zagreb (17680.3 J/cm²). Najveći iznos difuzne ozračenosti izmjeren je u Gospiću (19099.8 J/cm²). Na svim postajama najviše difuzne ozračenosti izmjereno je u trećoj dekadi. Srednje dnevne vrijednosti bile su u rasponu od splitskih 472.6 J/cm² do 616.1 J/cm² koliko je izmjereno u Gospiću. U Splitu je također izmjereno i najniži dnevni maksimum (816.1 J/cm²) dok je najveći izmjereno u Zadru (1106.8 J/cm²).
AGROMETEOROLOŠKE PRILIKE

dr. sc. Mislav Anić

Kao što je bio slučaj tijekom lipnja i srpnja, ekstremno visoke vrijednosti temperature tla na 5 cm dubine zabilježene su i tijekom kolovoza 2019. te su u cijeloj zemlji bile znatno više od višegodišnjeg prosjeka (1961. – 1990.) zbog čega je prema raspodjeli percentila tlo uglavnom bilo u kategoriji ekstremno toplo (slika 39).

Najveće odstupanje srednje mjesečne temperature tla na 5 cm dubine od višegodišnjeg prosjeka zabilježeno je u Bjelovaru i Sisku (5.7°C), a najmanje u Poreču (2.8°C) u čijoj je okolici tlo prema raspodjeli percentila svrstano u kategoriju vrlo toplo. U gorju je srednja mjesečna temperatura tla na 5 cm dubine za 3.7°C (Gospić) bila viša od višegodišnjeg prosjeka, na istoku zemlje za 4.6°C (Osijek), a u obalnom dijelu zemlje za 5.5°C (Zadar i Dubrovnik).

Najviša terminska temperatura tla na 5 cm dubine tijekom kolovoza izmjerena je 22.08.2019. u Dubrovniku i iznosila je 40.5°C. U gorju je rasla do 36.0°C koliko je izmjereno u Gospiću, a u nizinskem dijelu kontinenta do 38.6°C koliko je izmjereno u Osijeku. Terminska minimalna temperatura tla na 5 cm dubine duž Jadra se spustila do 17.7°C koliko je izmjereno u Poreču, a u gorju do 13.5°C koliko je izmjereno u Gospiću što je ujedno i najniža terminska temperatura tla na 5 cm dubine izmjerena tijekom kolovoza u zemlji. Najniža terminska temperatura tla na 20 cm dubine (17.7°C) također je izmjerena u Gospiću, dok je najviša terminska temperatura tla na 20 cm dubine (34.2°C) izmjerena u Dubrovniku.

Najniža minimalna vrijednost temperature zraka na 5 cm iznad tla tijekom kolovoza u gorju je izmjerena u Gospiću (6.4°C). U nizinskom dijelu kontinenta minimalna temperatura zraka na 5cm iznad tla spustila se do 4.3°C koliko je izmjereno u Slavonskom Brodu, a duž Jadranca do 10.4°C koliko je izmjereno u Rijeci. Najviše dana s kišom tijekom kolovoza, njih 13, zabilježeno je na Pargu. Na većini postaja u Dalmaciji broj dana s kišom nije prelazio 3, a ukupna mjesečna oborina nije prelazila 20 mm. Ukupna oborina u kolovozu na Visu
Slika 18. Terminske maksimalne i minimalne temperature tla (°C) na 5 i 20 cm dubine tijekom KOLOVOZA 2019.

<table>
<thead>
<tr>
<th>Postaja</th>
<th>5 cm dubine [°C]</th>
<th>20 cm dubine [°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>maks</td>
</tr>
<tr>
<td>Osijek</td>
<td>16.9</td>
<td>38.6</td>
</tr>
<tr>
<td>Slavonski Brod</td>
<td>17.1</td>
<td>35.4</td>
</tr>
<tr>
<td>Daruvar</td>
<td>17.9</td>
<td>34.7</td>
</tr>
<tr>
<td>Bjelovar</td>
<td>16.7</td>
<td>38.0</td>
</tr>
<tr>
<td>Varaždin</td>
<td>15.8</td>
<td>36.5</td>
</tr>
<tr>
<td>Zagreb Maksimir</td>
<td>17.2</td>
<td>34.8</td>
</tr>
<tr>
<td>Sisak</td>
<td>18.3</td>
<td>37.7</td>
</tr>
<tr>
<td>Ogulin</td>
<td>16.6</td>
<td>32.3</td>
</tr>
<tr>
<td>Gospić</td>
<td>13.5</td>
<td>36.0</td>
</tr>
<tr>
<td>Pazin</td>
<td>17.4</td>
<td>38.2</td>
</tr>
<tr>
<td>Poreč</td>
<td>17.7</td>
<td>36.3</td>
</tr>
<tr>
<td>Zadar</td>
<td>22.2</td>
<td>38.0</td>
</tr>
<tr>
<td>Knin</td>
<td>18.0</td>
<td>38.8</td>
</tr>
<tr>
<td>Dubrovnik</td>
<td>24.0</td>
<td>40.5</td>
</tr>
</tbody>
</table>

iznosila je 0.8 mm. Najviše dana s kišom (8) u nizinском dijelu kontinenta zabilježeno je u Osijeku i Varaždinu. Na postaji u Kninu tijekom kolovoza zabilježen je jedan dan s tućom.

Palmerovom metodom određene su mjesečne vrijednosti komponentivodne ravnoteže na pet kontinentalnih i pet obalnih postaja. Prema Palmerovoj metodi, oborina koja dospije u tlo prvo se troši na evapotranspiraciju, zatim na procjeđivanje vode kroz tlo, a višak na otjecanje. Osnovne komponente vodne ravnoteže su potencijalna evapotranspiracija \((PET)\), stvarna evapotranspiracija \((ET)\), sadržaj vode u tlu u sloju do dubine od 1 m \((S)\), otjecanje \((RO)\), procjedinjevanje \((R)\) i gubitak vode iz tla \((L)\). Vrijednosti komponenti vodne ravnoteže obično se izražavaju u mm, a predstavljaju visinu sloja vode koji bi se dobio na ravnoravnoteži vodnih površina \((evaporacija)\) te iz biljaka i životinja \((transpiracija)\). Potrebno je razlikovati \(PET\), \(ET\) i \(S\) zajedno u ukupnom mjesечно-količinom oborinu \(P\). Evapotranspiracija je proces isparavanja vode s tla i vodjenih površina \((evaporacija)\) te iz biljaka i životinja \((transpiracija)\). Potrebno je razlikovati \(PET\) od \(ET\). \(PET\) je najveća moguća evapotranspiracija u uvjetima kada nema ograničenja zbog nedostatka vode. Ukoliko je najveća moguća evapotranspiracija u uvjetima otjecanja \((RO)\), procjedinjevanje \((R)\) i gubitak vode iz tla \((L)\). Vrijednosti komponenti vodne ravnoteže obično se izražavaju u mm, a predstavljaju visinu sloja vode koji bi se dobio na ravnoravnoteži vodnih površina \((evaporacija)\) te iz biljaka i životinja \((transpiracija)\). Potrebno je razlikovati \(PET\) od \(ET\). \(PET\) je najveća moguća evapotranspiracija u uvjetima kada nema ograničenja zbog nedostatka vode. Ukoliko nema dovoljno vlage u tlu \(PET\) je veća od \(ET\).

Najviše vrijednosti \(PET\) u kontinentalnom dijelu zemlje u kolovozu određene su u Daruvaru (152 mm), a najniže u Gospiću (119 mm). Visoke vrijednosti \(PET\) su na svim postajama tijekom kolovoza posljedica su visokih temperaturi. Zbog nedovoljne količine vlage u tlu ukupne mjesečne vrijednosti \(ET\) tijekom kolovoza su na svim promatranim kontinentalnim postajama bile manje od ukupnih mjesečnih vrijednosti \(PET\). Najviša ukupna mjesečna količina oborine u kontinentalnom dijelu zemlje izmjerena je u Osijeku (82 mm), a najniža u Daruvaru (36 mm). Na postaji u Daruvaru određene su najveće mjesečne vrijednosti \(ET\) (118 mm), a najniže u iznosu od 90 mm na postaji u Križevcima. Najveća razlika između mjesečnih vrijednosti \(PET\) i \(ET\) u iznosu od 43 mm određena je u Osijeku, a najmanja od 18 mm u Gospiću. Ukupni sadržaj vode u tlu u sloju dubine do 1 m \((S)\) tijekom kolovoza još se malo smanjio u odnosu na prethodni mjesec, a najveća mu je vrijednost tijekom kolovoza određena na postaji u Daruvaru (201 mm).

Veće ukupne mjesečne vrijednosti \(PET\) na obalnim postajama u odnosu na vrijednosti na kontinentalnim postajama posljedica su viših temperaturi u tlo. Najveće mjesečne vrijednosti \(PET\) na obalnom dijelu zemlje za mjesec kolovoz određene su na postaji u Dubrovniku (298 mm), a najmanje u iznosu od 160 mm na postaji u Poreču. Sušni uvjeti u obalnom dijelu zemlje nastavili su se i u kolovozu, a kao posljedica nedostatka vlage u tlu ukupne mjesečne vrijednosti \(ET\) su bile znatno manje od ukupnih mjesečnih vrijednosti \(PET\) na svim promatranim obalnim postajama. Najveća razlika između ukupnih mjesečnih vrijednosti \(PET\) i \(ET\) u iznosu od 291 mm određena je na postaji u Dubrovniku, a najmanja u iznosu od 88 mm na postaji u Poreču. Ukupna mjesečna oborina u kolovozu na Hvaru iznosila je 8 mm, a u Dubrovniku samo 7 mm. Kao što je bio slučaj i u prethodnom mjesecu, vrijednosti \(S\) su na većini promatranih obalnih postaja iznosile 0 mm.

ŠUMSKI POŽARI

Marija Mokorić, dipl. inž.
Lovro Kalin, dipl. inž.

Glavna sezona zaštite šuma od požara raslinja u kojoj Državni hidrometeorološki zavod aktivno sudjeluje svojim analitičkim i prognostičkim produktima počinje svake godine 1. travnja, a završava 31. listopada.

Tijekom cijele godine računa se meteorološki indeks za nastanak i širenje požara raslinja po kanadskoj metodi (MIOP) za glavne meteorološke postaje u Hrvatskoj. S 7. travnja se počinje računati meteorološki indeks i za dodatne postaje na Jadranu i priobalju da bi se dobio bolji pregled o stanju biljnog pokrova, odnosno gorivog materijala. Meteorološki indeks (MIOP) pokazuje kako na vlažnost gorivog materijala utječu meteorološki elementi, odnosno brzina vjetra, temperatura zraka, relativa vlažnost, te količina oborine, a povezani su s vremenskim situacijama i klimatskim prilikama na određenom području.

Na Jadranu i u priobalju u našoj zemlji su usljed klimatskih prilika požari raslinja najčešći i najizrazitiji. Ugrožena je i gorska Hrvatska zbog velikih šuma, a posljednjih desetljeća i zbog sve češće dužih sušnih razdoblja. Stoga se prognostički indeks za nastanak i širenje požara raslinja po kanadskoj metodi (PMIO) od 1. svibnja do 31. listopada računa upravo za te predjele. MIOP se izrađuje za meteoroloških postaja na Jadranu i u priobalju, te za kontinentalni dio Hrvatske svaki dan u 14 sati po lokalnom vremenu:

Prognostički meteorološki indeks izrađuje dežurni prognostičar za 24 postaje na Jadranu i priobalju svakodnevno za sljedeći dan u 14 sati, a pri tome se koristi izračunima nekoliko raznih numeričkih prognostičkih modela. Na osnovi praćenja sinoptičke situacije, te performansi prognostičkih modela dežurni prognozira vrijednosti pojedinih elemenata vremena kojoj Državni hidrometeorološki zavod aktivno sudjeluje svojim analitičkim i prognozirima vrijednosti pojedinih elemenata vremena koja ulaze u izračun. Na osnovi direktnog izračuna mezoskalnog numeričkog prognozističkog modela Aladin/Alaro svakodnevno se računa prognozistički indeks (PMIO) za prekosutra za mjesta na Jadranu i područja u našoj zemlji.

Metodo (MIOP) za glavne meteorološke postaje u Hrvatskoj izrađuje dežurni prognozirava vrijednosti pojedinih elemenata vremena koja ulaze u izračun. Na osnovi direktnog izračuna mezoskalnog numeričkog prognozističkog modela Aladin/Alaro svakodnevno se računa prognozistički indeks (PMIO) za prekosutra za mjesta na Jadranu i područja u našoj zemlji.

Analiza srednjih mjesečnih klasa za kolovoz (slika 41) pokazuje da je ona bila nejednoliko raspoređena, odnosno da je velika razlika između sjevera i jugu. Tako

Analiza klasa opasnosti za nastanak i širenje požara raslinja

Analiza srednjih mjesečnih klasa za kolovoz (slika 41) pokazuje da je ona bila nejednoliko raspoređena, odnosno da je velika razlika između sjevera i jugu. Tako
je u dijelu Istre i Gorskog kotara srednja klasa bila čak i mala, na većem dijelu sjevernog Jadrana te Like bila je umjerena, a u Dalmaciji je bila uglavnom velika. Pritom je ponegdje na srednjodalmatinskim otocima bila čak i vrlo velika.

U protupožarnoj sezoni provodi se i jednostavna verifikacija prognoziranih i stvarnih klasa opasnosti. Usporedba ukupnog broja prognoziranih i stvarnih slučajeva prikazana je na slici 40. Iz koje se vidi da su prognoze bile razmjerno dobro ugođene, osobito za vrlo veliku klasu, što je s aspekta zaštite od šumskih požara i najvažnije.

Vremenska situacija nad branjenim područjem sustava obrane od tuče

U kolovozu ove godine vrijeme je bilo uobičajno stabilno. Nestabilnosti je, na branjenom području ili u neposrednoj blizini, bilo u prvoj i zadnjoj dekadi kolovoza u ukupno 8 dana. U 2 od tih dana bilo je pojave sugradice ili tuče na ukupno 4 postaje. Štete od tuče nije bilo. Ovo kao i utrošak sredstava djelovanja ukazuje na to da su nevremena ovogodišnjeg kolovoza bila znatno slabije učestalosti i intenziteta nego lani, a i u

Slika 40 Usporedba broja prognoziranih i stvarnih klasa opasnosti za KOLOVOZ 2019.

Slika 41 Srednja mjesečna klasa opasnosti za nastanak i širenje požara raslinja po kanadskoj metodi (MIOP) za KOLOVOZ 2019.

Slika 42. Prikaz, produkt MAX-Z radara sa RC Bilogora, vremenske situacije 2.8.2019. u 12.45 UTC.

<table>
<thead>
<tr>
<th>Datum</th>
<th>Broj GP u akciji sa generat.</th>
<th>Utrošak otopine (l)</th>
<th>Utrošak raketa (kom)</th>
<th>Broj LP sa ugleda sugradicom tučom štetom</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.8.2019</td>
<td>547</td>
<td>2075</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>3.8.2019</td>
<td>165</td>
<td>336</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.8.2019</td>
<td>556</td>
<td>1595</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23.8.2019</td>
<td>153</td>
<td>379</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24.8.2019</td>
<td>383</td>
<td>1513</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>25.8.2019</td>
<td>157</td>
<td>501</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26.8.2019</td>
<td>211</td>
<td>439</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
| UKUPNO | 2172 | 6838 | 43 | 2 | 2 | 0

odnosu na prosjek za kolovoz iz naprijed spomenutog niza od 20 godina.

Pojava tuče i sugradice, od oblaka najjačeg intenziteta bilo je u zapadnom dijelu branjenog područja na 3 postaje. Šteta od tuče nije bilo. Djelovanje prizemnim generatorima provedeno je na cijelom branjenom području od podneva pa do noći, a djelovanje raketa na području RC Osijek. U djelovanjima je utrošeno 2075 l otopine i 43 komada raketa.

U ostalim danima s pojavom nestabilnosti, one su bile slabijeg intenziteta i lokalnog karaktera.
Knjige

Hrvatske vode u zaštiti okoliša i prirode [zbornik radova = Croatian waters in environmental and nature protection proceedings] / 7. hrvatska konferencija o vodama [s međunarodnim sudjelovanjem] = 7th Croatian water conference [with international participation], Opatija [30. svibnja (May) – 1. lipnja (June)] 2019. ; uredništvo, editorial board Danko Biondić, Danko Holjević, Marija Vizner

Zagreb : Hrvatske vode, 2019. (Zagreb : Grafički zavod Hrvatske), XV, 1224 str. : ilustr., zemljop. crteži, graf. prikazi ; 24 cm

U Opatiji se od 30. svibnja do 1. lipnja 2019. godine održala 7. hrvatska konferencija o vodama – „Hrvatske vode u zaštiti okoliša i prirode”. Cilj konferencije bio je da se kroz četiri tradicionalne znanstveno - stručne teme:

- stanje voda i o vodi ovisnih ekosustava, hidrološki ekstremi i njihove posljedice, trendovi - oborine, kopnene površinske vode, podzemne vode, prijelazne vode i priobalno more;
- sustavi uređenja i korištenja voda i zemljišta - stanje i razvojni projekti;
- sustavi javne vodoopskrbe, odvodnje i pročišćavanja otpadnih voda - stanje i razvojni projekt;
- vodna politika, obrazovanje, vodnogospodarsko planiranje, međunarodna suradnja i sudjelovanje javnosti;
- sveobuhvatno i interdisciplinarno raspravlja o stanju voda i upravljanju vodama u Hrvatskoj te da rezultati rasprava donesu korisne smjernice za budućnost.

Zbornik radova 7. hrvatske konferencije o vodama sadržava 117 radova. Objavljene radove pripremilo je ukupno 327 autora i koautora iz Hrvatske i inozemstva od čega 286 autora i koautora iz Hrvatske (87%) i 41 autor i koautori iz inozemstva (13%). Inozemni autori i koautori su iz Bosne i Hercegovine, Italije, Mađarske, Novog Zelanda, Sjedinjenih Američkih Država, Slovenije, Srbije i Velike Britanije.

Časopisi – strani

Časopisi – domaći

Hrvatske vode vol. 27 (2019) : 4-6.

Obavijest iz Nacionalne i sveučilišne knjižnice u Zagrebu

Otvoren pristup – Project Muse: Basic Research Collection

Za hrvatsku znanstvenu i akademsku zajednicu otvoren je pristup na zbirku Basic Research Collection u okviru baze podataka Project Muse. Project Muse Basic Research Collection je interdisciplinarna zbira koja se sastoji od 230 znanstvenih časopisa koji pokrivaju područje društvenih i humanističkih znanosti. Baza također sadržava više od 1.000 e-knjiga u otvorenom pristupu.
Otvoren pristup – CINAHL with Full Text

Otvoren je pristup na bazu podataka CINAHL with Full Text, dostupnu putem EBSCOhost sučelja. To je baza podataka s cjelovitim tekstom koja pokriva područja sestrinstva, biomedicine i srodnih zdravstvenih djelatnosti. Baza sadrži više od 6 milijuna zapisa, indeksira više od 5.500 časopisa, a sadrži cjelovite tekstove iz više od 600 časopisa indeksiranih u bazi počevši od 1981. godine. Baza također obuhvaća knjige s područja zdravstva, disertacije s područja sestrinstva, zbornike radova s konferencija, audiovizualne materijale, poglavljav iz knjiga te pretražive citirane reference.

Ovid: slobodan pristup odabranim e-izvorima u kolovozu

Tijekom kolovoza tvrtka Ovid Technologies omogućuje slobodan pristup sljedećim odabranim e-izvorima:

Joanna Briggs Institute EBP Database sveobuhvatna je baza podataka koja sadrži istraživanja utemeljena na dokazima te obuhvaća širok spektar informacija u okviru biomedicine i zdravstva koje su analizirali, ocjenjivali i pripremili stručni recenzenti na JBI. JBI se smatra jednim od vodećih svjetskih pružatelja informacija i alata koji pomažu zdravstvenim djelatnicima u provedbi učinkovitog praktičnog programa utemeljenog na dokazima i pružanju najbolje moguće njege pacijentima.

Health and Psychosocial Instruments (HaPI) baza podataka omogućuje pristup informacijama o mjernim instrumentima (upitnicama, šemama kodiranja, skalama vrednovanja, anketama, testovima itd.) u područjima medicine, sestrinstva, javnog zdravstva, psihologije, socijalnog rada, sociologije i srodnim područjima. Sadržaj se na objavljenim istraživanjima iz recenziranih znanstvenih časopisa, knjiga, tehničkih izvještaja i drugih izvora.

AORN Journal je časopis koji profesionalnim medicinskim sestrama u okviru perioperativne njege pruža informacije o praksi utemeljoj na dokazima potrebnoj za zadovoljavanje fizioloških, biohemijskih, sigurnosnih i zdravstvenih potreba raznovrastog pacijentija, a namijenjeno je radiiziranja, dilemata, farmaceutima/farmakoloziama, anestezioloziama, medicinskim sestrama i drugim zdravstvenim djelatnicima koji sudjeluju u liječenju pacijenata u okviru intenzivne njege.

Detalji pristupa i trajanje licence mogu se provjeriti na adresi: http://baze.nsk.hr

Vremeplov kroz svibanj

kolovoza 1981.

MTV (Music Television) započeo s emitiranjem

Dana 1. kolovoza 1981. u 12:01 sati, MTV je započeo s emitiranjem riječima: “Dame i gospodo, rock and roll”, koje je izgovorio John Lack, i logom televizije preko snimke odbrojavanja i lansiranja prvog space Shuttlea Columbia, koje se dogodilo ranije te godine, i lansiranja Apolla 11. To je privatni kanal koji emitira samo glazbene spotove. Povremeno emitira i animirane serije, kao što su Daria, Beavis and Butthead, Downtown.

Podmornica Nautilus prva prošla ispod ledene kape Sjevernog pola

5. kolovoza

Dan domovinske zahvalnosti

Dan pobjede i domovinske zahvalnosti i Dan hrvatskih branitelja slavi se u Hrvatskoj 5. kolovoza svake godine kao spomen na pobjedu u Domovinskom ratu. Na taj datum 1995. Hrvatska vojska oslobodila je okupirani grad Knin u vojno-redarstvenoj operaciji Oluja.
6. kolovoza 1932.
Otvoren prvi Venecijanski filmski festival

Venecijanski filmski festival (Mostra internazionale d’arte cinematografica di Venezia) održava se svake godine krajem kolovoza i/ili početkom rujna u povijesnom Palazzo del Cinema na Lungomareu Marconi, na otocicu Lido u Veneciji. Glavna nagrada festivala je “Zlatni lav” (Leone d’oro). Filmski festival u Veneciji jedan je od najstarijih na svijetu!

9. kolovoza 1471.
Francesco della Rovere izabran je za papu

Francesco della Rovere izabran je za papu kao Siksto IV., čime je počelo svjetovnije razdoblje renesansnog papinstva koje je obilježeno rodbinskim vezama, narušenim financijama i kupovanjem službi. Ipak, Siksto IV. zabilježen je i kao veliki promicatelj umjetnosti, pa je među ostalim dao sagraditi znamenitu Sikstinsku kapelu.

Ernst Haeckel

12. kolovoza
Međunarodni dan mladih

14. kolovoza
Sinjska alka

Sinjska alka danas je jedinstveno viteško natjecanje u Europi. Nastala je početkom XVIII stoljeća. Nastavak je mnogobrojnih viteških nadmetanja koja su se održavala u većim mjestima mletačke Dalmacije, a najpoznatija su ona u Zadru (do 1820.), Imotskome (do oko 1840.) i Makarskoj (do 1832.).

15. kolovoza 1969.
Otvoren glazbeni festival Woodstock

Woodstock je započeo 15. kolovoza 1969. godine i trajao 3 dana. Ocupio je mnogobrojne hipipje. Kolektivni izlet na farmu Maxa Yasgura (50-tak kilometara udaljena od predviđenog Woodstocka) bio je alternativna pozornica jer se prvobitna lokacija pokazala premalom za brojne sudionike. Bio je to neočekivani događaj cijele jedne generacije: od očekivanih 200-tnjak tisuća posjetitelja brojka je narasla na nevjerojatnih 450-500 tisuća, dok je još dvaput toliko ostalo na zakrčenim prilaznim putovima (50 kilometara u krugu je promet bio paraliziran). Organizator, 25-godišnji Michael Lang, možda je mislio nešto zarađiti, no vidjevši koliko ljudi pristiže i kakve se sve poteškoće mogu dogoditi proglašava festival besplatnim, iako je ulaznica na početku bila 8 dolara na dan. Woodstock nije bio samo
rock festival kakvih je tog ljeta bilo diljem Amerike: tamo se odlazilo iz uvjerenja i iz protesta. Nikad se ništa slično nije dogodilo u povijesti čovječanstva. Samo pet osoba je umrlo (troje od predoziranja, jedna od puknuća slijepog crijeva dok je jednog usnulog tinejdžera pregazio traktor), ali su tijekom tri dana rođene tri bebe. Dogodio se vrhunac zanosa i prosvjeda cijele jedne generacije... Posljednji je na binu izišao Jimi Hendrix. Bio je to četvrti dan slavlja - 18. kolovoza 1969., 8. 30 ujutro. Dva sata kasnije nadahnuto je odsivirao američku himnu pred (preostalih) 40. 000 najizdržljivijih. Sve što se kasnije događalo ostalo je u velikoj sjeni Woodstocka...

19. kolovoza 2012.
Svjetski dan fotografije

20. kolovoza 1975.
NASA lansirala Viking 1 na Mars

22. kolovoza 1932.
BBC počeo emitirati televizijski program

24. kolovoza 1853.
Izumljen čips od krumpira

Jednu od najpopularnijih grickalica današnjice, čips, izumio je sin afro-ame- ričkog oca i majke Amerikanke, George Crum, koji je radio kao kuhar u Moon Lake Lodge odmorištu u ljeto 1853. Sve je počelo kada je pokrovitelj naručio parkepfe te ih je poslao natrag Crumu u kuhinju jer su mu krumpirići bili previše debeli i mekani. Kako bi pokrovitelj naučio lekciju, Crum je narezao novu seriju krumpira tanko koliko je najviše mogao, a zatim ih je pržio dok nisu postali tvrdi i hrskavi. Konačno, dodao je veliku količinu soli. Na Crumovo iznenađenje, jelo je završio kao hit i nova grickalica je rođena! Nekoliko godina kasnije, 1860., Crum je otvorio svoj restoran koji je imao košaricu čipsa na svakom stolu. Iako Crum nikada nije pokušao patentirati svoj izum, snack se na kraju masovno proizvodi i prodaje u vrećama - omogućujući tisuće radnih mjesta diljem svijeta.
zastoj u izgradnji pruge dogadio se u Mraclinu jer su seljaci bili protiv njezine izgradnje, pa su čak napadali inženjere i radnike, razbijali instrumente, rušili donije objekte i uništavali pragove. Ipak, u svibnju 1862. počelo je polaganje tračnica, a dovršen je i most preko rijeke Krapine pokraj Zaprešića. Napokon, 31. kolovoza 1862., stigla je iz Zidanog Mosta prva lokomotiva u Zagreb, na Zapadni kolodvor gdje se okupio gotovo cijeli grad kako bi vidio tu zadimljenu kočiju koja se kreće bez konja. Nakon uspjele pokusne vožnje u Zagreb je stigla i prva željeznička kompozicija s dva vagona, a kad su položeni brzojavni vodovi, signali i sigurnosni uređaji duž pruge, otvoren je 1. listopada 1862. redovit promet Zidani Most-Zagreb-Sisak.

(Izbor iz digitalne zbirke MetelWin.)
IZVANREDNI METEOROLOŠKI I HIDROLOŠKI DOGAĐAJI IZ NOVINSKIH IZVJEŠĆA U HRVATSKOJ U KOLOVOZU 2019. GODINE

2. kolovoz 2019.

Olujno nevrijeme, obilna kiša, tuča, jaki vjetar, pogodili su cijelu Hrvatsku. U Zagrebu je padala tuča, a jaki vjetar rušio je stabla i pomicao kioske.

Na Jadranu je olujni vjetar izbacivao plovila na obalu, nasukan ih je veliki broj na svim dijelovima Jadran. More je uzavrelo. Jaki pljuskovi otežavali su promet. Mjestimice su se udružili valovi mora i obline oborine i plavili ceste u priobalju. Kiša je u gradovima na obali stvorila bujice koje su tekle prema moru, tako su u moru završili i neki automobili. Udari vjetra u okolicu Splita bili su oko 150 km/h. Letjele su stolice i stolovi, trgale su se tende, lomile su se grane i padala cijela stabla. Valovi su bili visoki i nekoliko metara. Oko 140

Zagreb, 2. kolovoza 2019.

Split, 2. kolovoza 2019.

Rovinj, 2. kolovoza 2019.
nautičara uputilo je poziv u pomoć službama spašavanja na moru. Čini se da je nevrijeme bilo najjače u Sukošanu, tamo su pored cesta bili potopljeni i podrumi i prizemlja kuća. More je srušilo mulove, i izlilo se čak 200 metara od obale. Jedna se jedrilica i potopila. Plijeni val potopio je i dijelove Biograda.

U Samoboru je udar groma ozlijedio stranog turista.

Od 10. do 13. kolovoza 2019.

Toplinski val, zahvatio je Hrvatsku. Prvi dan su se temperature kretale od 31 do 35°C. Ponegdje je već u 8 ujutro bilo 28°C. Meteoalarm je izdao upozorenja na visoke temperature zraka. Liječnici su upozoravali na zdravstvene probleme i davali savjete za zaštitu od vrućina. 12. kolovoza je dostignuta u Kninu i temperatura od 40°C. UV indeks je vrlo visok, što može biti vrlo opasno po zdravlje. Toplo je i more, na Mljetu je bilo gotovo 30°C, u Rabu oko 28°C. Posvuda je more bilo toplije od 25°C. Plaže pored svih vodenih površina (rijeke, jezera, more) bile su popunjene. Potrošnja električne energije približila se rekordu iz 2017. godine, a razlog je velika upotreba klima uređaja. Hitna medicinska pomoć imala je veliki broj intervencija zbog zdravstvenih tegoba povezanih s vrućinom, ali i visokom količinom vodene pare u zraku, jer je prevladavao osjećaj sparine.
Najviše izmjerene temperature zraka u Hrvatskoj za razdoblje od kada postoje mjerenja

Ljeto je vrijeme kada se redovito nameće pitanje koje su do sada najviše izmjerene temperature zraka. Do sada apsolutno najviša temperatura zraka u Hrvatskoj, izmjerena prema standardima Svjetske meteorološke organizacije, tj. u hladu meteorološke kućiće, zabilježena je 4. kolovoza 1981. godine u Pločama i iznosila je 42.8°C.

U tablici 1 prikazane su vrijednosti s apsolutno najvišom temperaturom zraka (apsolutnim maksimumom) izmjerena na pojedinoj postaji s datumima pojave pojedinog maksimuma, ovisno o postojanju mjerenja na pojedinoj postaji. Apsolutni maksimumi svrstani su u kategorije:

- Apsolutni maksimum za Hrvatsku
- Temperature više od 40 °C
- Temperature od 30 °C do 40 °C
- Temperature ispod 30 °C

Gotovo svi navedeni apsolutni maksimumi izmjereni su u srpnju i kolovozu, izuzetak je Virovitica gdje je apsolutni maksimum od 39.5°C izmjeren 27. lipnja 2017.

Tablica 1. Apsolutno najviše vrijednosti temperature zraka izmjerene na meteorološkim postajama u Hrvatskoj

<table>
<thead>
<tr>
<th>Meteorološka postaja</th>
<th>Početak mjerenja</th>
<th>Temperatura (°C)</th>
<th>Datum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlovac</td>
<td>1949.</td>
<td>42,4</td>
<td>5. 7. 1950</td>
</tr>
<tr>
<td>Knin</td>
<td>1949.*</td>
<td>42,3</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Split Kaštela</td>
<td>1981.</td>
<td>42,2</td>
<td>2. 8. 2017</td>
</tr>
<tr>
<td>Cres</td>
<td>1985.*</td>
<td>41,5</td>
<td>21. 7. 2015</td>
</tr>
<tr>
<td>Gorinci</td>
<td>2002.</td>
<td>41,4</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Abrami</td>
<td>1981.</td>
<td>41,4</td>
<td>22. 7. 2015</td>
</tr>
<tr>
<td>Benkovac</td>
<td>1981.*</td>
<td>41,0</td>
<td>5. 8. 2017</td>
</tr>
<tr>
<td>Botinec</td>
<td>1981.</td>
<td>41,0</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Drniš</td>
<td>1957.*</td>
<td>41,0</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Ilok</td>
<td>1981.*</td>
<td>41,0</td>
<td>24. 7. 2007</td>
</tr>
<tr>
<td>Letaj - brana</td>
<td>1995.*</td>
<td>41,0</td>
<td>19. 7. 2007</td>
</tr>
<tr>
<td>Vrgorac</td>
<td>1981.*</td>
<td>41,0</td>
<td>4. 8. 2017</td>
</tr>
<tr>
<td>Brana Ričice</td>
<td>1993.</td>
<td>40,8</td>
<td>18. 7. 2007</td>
</tr>
<tr>
<td>Govedari</td>
<td>1981.*</td>
<td>40,8</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Lipik</td>
<td>1981.*</td>
<td>40,8</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Zabok</td>
<td>1991.*</td>
<td>40,8</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Imotski</td>
<td>1981.</td>
<td>40,7</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Osijek - zračna luka</td>
<td>1981.*</td>
<td>40,6</td>
<td>24. 7. 2007</td>
</tr>
<tr>
<td>Sinj</td>
<td>1950.</td>
<td>40,5</td>
<td>3. 8. 2017</td>
</tr>
<tr>
<td>Zupanja</td>
<td>1981.*</td>
<td>40,5</td>
<td>24. 7. 2007</td>
</tr>
<tr>
<td>Pag</td>
<td>1978.*</td>
<td>40,4</td>
<td>24. 7. 1998</td>
</tr>
<tr>
<td>Zagreb Maksimir</td>
<td>1949.</td>
<td>40,4</td>
<td>5. 7. 1950</td>
</tr>
<tr>
<td>Donji Miholjac</td>
<td>1954.</td>
<td>40,4</td>
<td>20. 7. 2007</td>
</tr>
<tr>
<td>Novigrad (Dalmacija)</td>
<td>1981.*</td>
<td>40,4</td>
<td>22. 7. 2015</td>
</tr>
<tr>
<td>Place</td>
<td>Year</td>
<td>Latitude</td>
<td>Date</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>Zagreb Grič</td>
<td>1881.*</td>
<td>40,3</td>
<td>5. 7. 1950.</td>
</tr>
<tr>
<td>Rijeka</td>
<td>1948.*</td>
<td>40,0</td>
<td>19. 7. 2007.</td>
</tr>
<tr>
<td>Senj</td>
<td>1949</td>
<td>39,7</td>
<td>22. 7. 2015.</td>
</tr>
<tr>
<td>Ogulin</td>
<td>1949.</td>
<td>39,5</td>
<td>5. 7. 1950.</td>
</tr>
<tr>
<td>Grad</td>
<td>GOD.</td>
<td>GODINA 1</td>
<td>GODINA 2</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Gorice</td>
<td>2004</td>
<td>39,4</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Šibenik</td>
<td>1949</td>
<td>39,4</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Rab</td>
<td>1978</td>
<td>39,3</td>
<td>22. 7. 2015</td>
</tr>
<tr>
<td>Donji Lapac</td>
<td>1982.*</td>
<td>39,2</td>
<td>2. 8. 2017</td>
</tr>
<tr>
<td>Virovitica</td>
<td>1951.*</td>
<td>39,2</td>
<td>27. 6. 1965</td>
</tr>
<tr>
<td>Krapina</td>
<td>1993.*</td>
<td>39,1</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Ličko Lešće</td>
<td>1960.*</td>
<td>39,1</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Plaški</td>
<td>1960.*</td>
<td>39,1</td>
<td>8. 8. 2013</td>
</tr>
<tr>
<td>Bol (otok Brač)</td>
<td>1981.*</td>
<td>39,0</td>
<td>9. 8. 2017</td>
</tr>
<tr>
<td>Božava</td>
<td>1997.*</td>
<td>39,0</td>
<td>3. 8. 2017</td>
</tr>
<tr>
<td>Čakovec</td>
<td>1981.*</td>
<td>39,0</td>
<td>20. 7. 2007</td>
</tr>
<tr>
<td>Opeke</td>
<td>1981.*</td>
<td>39,0</td>
<td>20. 8. 2000</td>
</tr>
<tr>
<td>Kutjevo - Mitrovac</td>
<td>2003.*</td>
<td>39,0</td>
<td>20. 7. 2007</td>
</tr>
<tr>
<td>Crikvenica</td>
<td>1895.*</td>
<td>39,0</td>
<td>17. 7. 1928</td>
</tr>
<tr>
<td>Volosko</td>
<td>1995.*</td>
<td>39,0</td>
<td>22. 7. 2006</td>
</tr>
<tr>
<td>Bakar</td>
<td>1997.*</td>
<td>39,0</td>
<td>19. 7. 2007</td>
</tr>
<tr>
<td>Korčula</td>
<td>1981.*</td>
<td>39,0</td>
<td>5. 8. 2013</td>
</tr>
<tr>
<td>Mali Lošinj</td>
<td>1961.</td>
<td>39,0</td>
<td>6. 8. 2017</td>
</tr>
<tr>
<td>Otočac</td>
<td>1994.*</td>
<td>39,0</td>
<td>4. 8. 2017</td>
</tr>
<tr>
<td>Pula</td>
<td>1963.</td>
<td>39,0</td>
<td>5. 8. 2017</td>
</tr>
<tr>
<td>Krk</td>
<td>1981.*</td>
<td>38,8</td>
<td>21. 7. 2015</td>
</tr>
<tr>
<td>Sumartin (otok Brač)</td>
<td>1998.*</td>
<td>38,8</td>
<td>4. 8. 2013</td>
</tr>
<tr>
<td>Komiža</td>
<td>1981.*</td>
<td>38,8</td>
<td>24. 7. 2007</td>
</tr>
<tr>
<td>Gospić</td>
<td>1872.*</td>
<td>38,7</td>
<td>30. 7. 1947</td>
</tr>
<tr>
<td>Karlobag</td>
<td>1993.*</td>
<td>38,7</td>
<td>19. 7. 2007</td>
</tr>
<tr>
<td>Đurđevac</td>
<td>1960.</td>
<td>38,6</td>
<td>10. 8. 2017</td>
</tr>
<tr>
<td>Plitvice</td>
<td>1986.*</td>
<td>38,6</td>
<td>4. 8. 2017</td>
</tr>
<tr>
<td>Location</td>
<td>Year</td>
<td>Latitude</td>
<td>Date</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Split-Marjan</td>
<td>1948</td>
<td>38.6</td>
<td>5. 7. 1950.</td>
</tr>
<tr>
<td>Bjelovar</td>
<td>1949</td>
<td>38.5</td>
<td>20. 7. 2007.</td>
</tr>
<tr>
<td>Hvar</td>
<td>1858.*</td>
<td>37.7</td>
<td>8. 8. 1956.</td>
</tr>
<tr>
<td>Postaja</td>
<td>Period</td>
<td>Value</td>
<td>Datum</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>-------</td>
<td>-----------</td>
</tr>
<tr>
<td>Lokve brana</td>
<td>1960.</td>
<td>33,3</td>
<td>27.7.1983.</td>
</tr>
<tr>
<td>Stara Sušica</td>
<td>1960.*</td>
<td>33,0</td>
<td>28.7.1983.</td>
</tr>
<tr>
<td>Zavižan</td>
<td>1954.</td>
<td>28,3</td>
<td>22.7.2015.</td>
</tr>
</tbody>
</table>

*n nepotpuni niz podataka

mr. sc. Kornelija Špoler Čanić
dr. sc. Tanja Likso
Ana Weissneberger, dipl. ing.